Recognizable and rational languages of finite an infinite traces

Trace languages are used in computer science to provide a description of the behaviours of concurrent systems. If we are interested in systems which never stop then we have to consider languages of infinite traces. In this paper, we introduce and study recognizable and rational languages of finite and infinite traces. We characterize recognizable languages by means of a syntactic congruence. We prove that the family of recognizable languages is strictly included in the family of rational languages. Next, we study the closure properties of the family of recognizable languages. We prove that this family is closed under the Boolean operations and under concatenation. Contrary to the (finite) iteration, the infinite iteration of a finite trace is proved to be recognizable. We conclude this paper with some open problems.

[1]  Gérard Roucairol,et al.  Maximal Serializability of Iterated Transactions , 1985, Theor. Comput. Sci..

[2]  Grzegorz Rozenberg,et al.  Infinitary Languages: Basic Theory an Applications to Concurrent Systems , 1986, Current Trends in Concurrency.

[3]  André Arnold,et al.  A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..

[4]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[5]  Grzegorz Rozenberg,et al.  Theory of Traces , 1988, Theor. Comput. Sci..

[6]  Dominique Perrin,et al.  Partial Commutations , 1989, ICALP.

[7]  Yves Métivier Une Condition Suffisante de Reconnaissabilité Dans un Monoïde Partiellement Commutatif , 1986, RAIRO Theor. Informatics Appl..

[8]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[9]  Ronald L. Graham,et al.  Rudiments of Ramsey theory , 1981 .

[10]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[11]  Jacques Sakarovitch,et al.  On Regular Trace Languages , 1987, Theor. Comput. Sci..

[12]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[13]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[14]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[15]  Volker Diekert,et al.  Combinatorics on Traces , 1990, Lecture Notes in Computer Science.

[16]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[17]  Yves Métivier,et al.  Recognizable Subsets of Some Partially Abelian Monoids , 1985, Theor. Comput. Sci..

[18]  Wieslaw Zielonka Safe Executions of Recognizable Trace Languages by Asynchronous Automata , 1989, Logic at Botik.

[19]  Paul Gastin,et al.  An asychronous model for distributed systems (French) , 1990 .

[20]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[21]  Yves Métivier,et al.  On Recognizable Subsets of Free Partially Commutative Monoids , 1986, Theor. Comput. Sci..

[22]  Paul Gastin,et al.  Infinite Traces , 1990, Semantics of Systems of Concurrent Processes.

[23]  Robert Cori,et al.  Automates et Commutations Partielles , 1985, RAIRO Theor. Informatics Appl..

[24]  Edward Ochmanski,et al.  Regular behaviour of concurrent systems , 1985, Bull. EATCS.