Parallel processing in computational stochastic dynamics

Abstract Studying large complex problems that often arise in computational stochastic dynamics (CSD) demands significant computer power and data storage. Parallel processing can help meet these requirements by exploiting the computational and storage capabilities of multiprocessing computational environments. The challenge is to develop parallel algorithms and computational strategies that can take full advantage of parallel machines. This paper reviews some of the characteristics of parallel computing and the techniques used to parallelize computational algorithms in CSD. The characteristics of parallel processor environments are discussed, including parallelization through the use of message passing and parallelizing compilers. Several applications of parallel processing in CSD are then developed: solutions of the Fokker–Planck equation, Monte Carlo simulation of dynamical systems, and random eigenvector problems. In these examples, parallel processing is seen to be a promising approach through which to resolve some of the computational issues pertinent to CSD.

[1]  M. Ortiz,et al.  Unconditionally stable concurrent procedures for transient finite element analysis , 1986 .

[2]  B. F. Spencer,et al.  SOLUTION OF THE FIRST PASSAGE PROBLEM FOR SIMPLE LINEAR AND NONLINEAR OSCILLATORS BY THE FINITE ELEMENT METHOD. , 1983 .

[3]  Charbel Farhat,et al.  A new finite element concurrent computer program architecture , 1987 .

[4]  G. Schuëller,et al.  Assessment of low probability events of dynamical systems by controlled Monte Carlo simulation , 1999 .

[5]  Robert H. Sues,et al.  Parallel Computing for Probabilistic Response Analysis of High Temperature Composites , 1994 .

[6]  Michael J. Flynn,et al.  Some Computer Organizations and Their Effectiveness , 1972, IEEE Transactions on Computers.

[7]  S. Krenk,et al.  IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics : proceedings of the IUTAM Symposium held in Trondheim, Norway, 3-7 July 1995 , 1996 .

[8]  B. Spencer,et al.  First passage time for linear systems with stochastic coefficients , 1987 .

[9]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[10]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[11]  Lawrence A. Bergman,et al.  First passage of a sliding rigid structure on a frictional foundation , 1985 .

[12]  Hojjat Adeli,et al.  High‐Performance Computing in Structural Mechanics and Engineering , 1993 .

[13]  David S. Burnett,et al.  Finite Element Analysis: From Concepts to Applications , 1987 .

[14]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[15]  Helmut J. Pradlwarter,et al.  On the stochastic response of nonlinear FE models , 1999 .

[16]  Hans Petter Langtangen,et al.  A general numerical solution method for Fokker-Planck equations with applications to structural reliability , 1991 .

[17]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[18]  C. Bucher,et al.  On Efficient Computational Schemes to Calculate Structural Failure Probabilities , 1989 .

[19]  Shirley J. Dyke,et al.  Monte Carlo Simulation of Dynamical Systems of Engineering Interest in a Massively Parallel Computing Environment: an Application of Genetic Algorithms , 1996 .

[20]  L. Bergman,et al.  On the moments of time to first passage of the linear oscillator , 1981 .

[21]  Kincho H. Law,et al.  A parallel finite element method and its prototype implementation on a hypercube , 1989 .

[22]  Jian-Qiao Sun,et al.  First-passage time probability of non-linear stochastic systems by generalized cell mapping method , 1988 .

[23]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[24]  A. Naess,et al.  Efficient path integration methods for nonlinear dynamic systems , 2000 .

[25]  Helmut J. Pradlwarter,et al.  Reliability of MDOF-systems , 1994 .

[26]  Michael J. Flynn,et al.  Very high-speed computing systems , 1966 .

[27]  Ahmed K. Noor,et al.  Nonlinear finite element dynamic analysis on multiprocessor computers , 1988 .

[28]  N. C. Nigam Introduction to Random Vibrations , 1983 .

[29]  G. Karami Lecture Notes in Engineering , 1989 .

[30]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[31]  Helmut J. Pradlwarter,et al.  Stochastic analysis of dynamical systems by phase-space-controlled Monte Carlo simulation , 1999 .

[32]  A. Tylikowski,et al.  Vibration of a non-linear single degree of freedom system due to poissonian impulse excitation , 1986 .

[33]  Jian-Qiao Sun,et al.  Effects of small random uncertainties on non-linear systems studied by the generalized cell mapping method , 1991 .

[34]  Patrick J. Roache,et al.  Elliptic Marching Methods and Domain Decomposition , 1995 .

[35]  B. Nour-Omid,et al.  Comparison of Lanczos with Conjugate Gradient Using Element Preconditioning , 1987 .

[36]  Jian-Qiao Sun,et al.  Global analysis of nonlinear dynamical systems with fuzzy uncertainties by the cell mapping method , 1990 .

[37]  Gregory V. Wilson,et al.  Practical parallel programming , 1999, IEEE Concurr..

[38]  S. Vajda,et al.  Symposium on Monte Carlo Methods , 1957, The Mathematical Gazette.

[39]  B. Spencer,et al.  On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems , 1993 .

[40]  J. G. Malone Automated mesh decomposition and concurrent finite element analysis for hypercube multiprocessor computers , 1988 .

[41]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[42]  K. Bathe,et al.  Large Eigenvalue Problems in Dynamic Analysis , 1972 .

[43]  Erik Arthur Johnson On-Line Monitoring, Control, and Reliability of Structural Dynamical Systems , 1997 .

[44]  Robin S. Langley,et al.  A finite element method for the statistics of non-linear random vibration , 1985 .

[45]  G. S. Szekely,et al.  Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties , 2001 .

[46]  G. Schuëller,et al.  On advanced Monte Carlo simulation procedures in stochastic structural dynamics , 1997 .

[47]  Lawrence A. Bergman,et al.  Observations With Regard To Massively Parallel Computation For Monte Carlo Simulation Of Stochastic , 1997 .

[48]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[49]  William R. Martin,et al.  Probabilistic structural mechanics research for parallel processing computers , 1991 .

[50]  Lawrence A. Bergman,et al.  On the reliability of a simple hysteretic system , 1985 .

[51]  Hojjat Adeli,et al.  Parallel Processing in Computational Mechanics , 1992 .

[52]  W. Morven Gentleman,et al.  Some Complexity Results for Matrix Computations on Parallel Processors , 1978, JACM.

[53]  T. T. Soong,et al.  Random Vibration of Mechanical and Structural Systems , 1992 .

[54]  A. Naess,et al.  Response statistics of nonlinear, compliant offshore structures by the path integral solution method , 1993 .

[55]  Ted Belytschko,et al.  Innovative Methods for Nonlinear Problems , 1984 .

[56]  Billie F. Spencer,et al.  Numerical Solution of the Four-Dimensional Nonstationary Fokker-Planck Equation , 2001 .