Competing pathways in odd oxygen photochemistry of the martian atmosphere

[1]  N. Schneider,et al.  Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water , 2017 .

[2]  V. L. Orkin,et al.  Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .

[3]  Michael H. Wong,et al.  Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover , 2015 .

[4]  M. Lemmon,et al.  Eight-year climatology of dust optical depth on Mars , 2014, 1409.4841.

[5]  Jean-Baptiste Madeleine,et al.  Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds , 2013, 1310.1010.

[6]  F. Lefévre,et al.  Transport-driven formation of a polar ozone layer on Mars , 2013 .

[7]  S. Murchie,et al.  First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere , 2013 .

[8]  F. Lefévre,et al.  Chemistry of the Atmospheres of Mars, Venus, and Titan , 2013 .

[9]  T. Encrenaz,et al.  Hydrogen peroxide on Mars: Observations, interpretation and future plans , 2012 .

[10]  M. Wolff,et al.  Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model , 2011 .

[11]  F. Forget The present and past climates of planet Mars , 2009 .

[12]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[13]  T. Encrenaz,et al.  Heterogeneous chemistry in the atmosphere of Mars , 2008, Nature.

[14]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[15]  V. Krasnopolsky Photochemistry of the martian atmosphere: Seasonal, latitudinal, and diurnal variations , 2006 .

[16]  F. Forget,et al.  Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models , 2005 .

[17]  Pascal Rannou,et al.  Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model , 2004 .

[18]  Franck Lefèvre,et al.  Three-dimensional modeling of ozone on Mars , 2004 .

[19]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[20]  R. Clancy,et al.  Annual (perihelion-aphelion) cycles in the photochemical behavior of the global Mars atmosphere , 1996 .

[21]  A. Anbar,et al.  A photochemical model of the martian atmosphere. , 1994, Icarus.

[22]  V. Krasnopolsky Uniqueness of a solution of a steady state photochemical problem: Applications to Mars , 1994 .

[23]  O. Talagrand,et al.  Meteorological Variability and the Annual Surface Pressure Cycle on Mars , 1993 .

[24]  J. Blamont,et al.  Stability of the Martian atmosphere: Possible role of heterogeneous chemistry , 1990 .

[25]  S. Madronich Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds , 1987 .

[26]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[27]  C. B. Farmer,et al.  The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment , 1982 .

[28]  M. McElroy,et al.  Photochemistry of the Martian atmosphere , 1977 .

[29]  D. Hunten,et al.  Spectroscopy and Acronomy of O2 on Mars , 1972 .

[30]  Michael B. McElroy,et al.  Stability of the Martian Atmosphere , 1972, Science.

[31]  E. R. Allen,et al.  Atmospheric photochemistry. , 1970, Science.