Primitive Independence Results

We present some new set and class theoretic independence results from ZFC and NBGC that are particularly simple and close to the primitives of membership and equality (see Secs. 4 and 5). They are shown to be equivalent to familiar small large cardinal hypotheses. We modify these independendent statements in order to give an example of a sentence in set theory with 5 quantifiers which is independent of ZFC (see Sec. 6). It is known that all 3 quantifier sentences are decided in a weak fragment of ZF without power set (see [4]).