Limits to Poisson's ratio in isotropic materials—general result for arbitrary deformation

The lower bound customarily cited for Poisson's ratio ?, ?1, is derived from the relationship between ? and the bulk and shear moduli in the classical theory of linear elasticity. However, experimental verification of the theory has been limited to materials having ????0.2. From consideration of the longitudinal and biaxial moduli, we recently determined that the lower bound on ? for isotropic materials from this theory is actually . Herein we generalize this result, first by analyzing expressions for ? in terms of six common elastic constants, and then by considering arbitrary strains. The results corroborate that for classical linear elasticity to be applicable. Of course, a few materials exist for which ??<?0.2, thus deviating from this bound; accurate analysis of their mechanical behavior requires more sophisticated elasticity models.

[1]  P. Mott,et al.  Limits to Poisson’s ratio in isotropic materials , 2009, 0909.4697.

[2]  R. Warburton,et al.  Analytic Approximations of Projectile Motion with Quadratic Air Resistance , 2010 .

[3]  Michael Stingl,et al.  Finding Auxetic Frameworks in Periodic Tessellations , 2011, Advanced materials.

[4]  M. Poisson Mémoire sur l'équilibre et le mouvement des corps élastiques , 1828 .

[5]  E. Grüneisen 1. Die elastischen Konstanten der Metalle bei kleinen Deformationen. II. Torsionsmodul, Verhältnis von Querkontraktion zu Längsdilatation und kubische Kompressibilität , 1908 .

[6]  Z. Y. Tay,et al.  Examination of cylindrical shell theories for buckling of carbon nanotubes , 2011 .

[7]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[8]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[9]  Gene Simmons,et al.  Elastic Constants of Pyrite , 1963 .

[10]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[11]  R. Lakes,et al.  Non-linear properties of polymer cellular materials with a negative Poisson's ratio , 1992 .

[12]  M. Kozlov,et al.  Modeling the auxetic transition for carbon nanotube sheets , 2008, 0903.2892.

[13]  G. Bradfield Use in industry of elasticity measurements in metals with the help of mechanical vibrations , 1964 .

[14]  J. Bell,et al.  The experimental foundations of solid mechanics , 1984 .

[15]  C. Klein,et al.  Young's modulus and Poisson's ratio of CVD diamond , 1993 .

[16]  E. Grüneisen Einfluß der Temperatur auf die Kompressibilität der Metalle , 1910 .

[17]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[18]  John R. Dorgan,et al.  The bulk modulus and Poisson's ratio of “incompressible” materials , 2008 .

[19]  R. Lakes,et al.  Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam , 1994, Journal of Materials Science.

[20]  R. Bogoslovov,et al.  Effect of structural arrest on Poisson's ratio in nanoreinforced elastomers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  R. Clifton,et al.  The Physics of Large Deformation of Crystalline Solids (Springer Tracts in Natural Philosophy, Vol. 14) , 1969 .

[22]  R. S. Lakes,et al.  Non-linear properties of metallic cellular materials with a negative Poisson's ratio , 1992 .

[23]  E. Anastassakis,et al.  Elastic properties of textured diamond and silicon , 2001 .

[24]  R. Yang,et al.  Ductile titanium alloy with low Poisson's ratio. , 2007, Physical review letters.

[25]  T. Darling,et al.  Beryllium's monocrystal and polycrystal elastic constants , 2004 .

[26]  M. D'evelyn,et al.  Elastic properties of polycrystalline cubic boron nitride and diamond by dynamic resonance measurements , 1997 .

[27]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[28]  H. Ledbetter,et al.  Some remarks on the range of Poisson's ratio in isotropic linear elasticity , 2012 .

[29]  T. Rouxel,et al.  Poisson's ratio and the densification of glass under high pressure. , 2008, Physical review letters.

[30]  L. F. A Treatise on the Mathematical Theory of Elasticity , Nature.

[31]  J. Parise,et al.  Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.

[32]  Shaochen Chen,et al.  Three‐Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson's Ratio , 2011, Advanced functional materials.

[33]  L. Colombo,et al.  Nonlinear elasticity in nanostructured materials , 2011 .

[34]  G. Lamé,et al.  Leçons Sur la Théorie Mathématique de L'élasticité des Corps Solides , 2009 .

[35]  J. Bell The Physics of Large Deformation of Crystalline Solids , 1968 .

[36]  Hong Hu,et al.  A review on auxetic structures and polymeric materials , 2010 .

[37]  Luzhuo Chen,et al.  Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures , 2009 .

[38]  Lawrence F. Shampine,et al.  Non-negative solutions of ODEs , 2005, Appl. Math. Comput..

[39]  Igor Emri,et al.  Poisson's Ratio in Linear Viscoelasticity – A Critical Review , 2002 .

[40]  S. Spinner Elastic Moduli of Glasses by a Dynamic Method , 1954 .

[41]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[42]  Failure of classical elasticity in auxetic foams , 2012, 1208.5793.

[43]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[44]  G. Milton Composite materials with poisson's ratios close to — 1 , 1992 .

[45]  M. Rovati Directions of auxeticity for monoclinic crystals , 2004 .

[46]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .