Limits to Poisson's ratio in isotropic materials—general result for arbitrary deformation
暂无分享,去创建一个
[1] P. Mott,et al. Limits to Poisson’s ratio in isotropic materials , 2009, 0909.4697.
[2] R. Warburton,et al. Analytic Approximations of Projectile Motion with Quadratic Air Resistance , 2010 .
[3] Michael Stingl,et al. Finding Auxetic Frameworks in Periodic Tessellations , 2011, Advanced materials.
[4] M. Poisson. Mémoire sur l'équilibre et le mouvement des corps élastiques , 1828 .
[5] E. Grüneisen. 1. Die elastischen Konstanten der Metalle bei kleinen Deformationen. II. Torsionsmodul, Verhältnis von Querkontraktion zu Längsdilatation und kubische Kompressibilität , 1908 .
[6] Z. Y. Tay,et al. Examination of cylindrical shell theories for buckling of carbon nanotubes , 2011 .
[7] J. Kysar,et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.
[8] R. Lakes,et al. Poisson's ratio and modern materials , 2011, Nature Materials.
[9] Gene Simmons,et al. Elastic Constants of Pyrite , 1963 .
[10] A. Love. A treatise on the mathematical theory of elasticity , 1892 .
[11] R. Lakes,et al. Non-linear properties of polymer cellular materials with a negative Poisson's ratio , 1992 .
[12] M. Kozlov,et al. Modeling the auxetic transition for carbon nanotube sheets , 2008, 0903.2892.
[13] G. Bradfield. Use in industry of elasticity measurements in metals with the help of mechanical vibrations , 1964 .
[14] J. Bell,et al. The experimental foundations of solid mechanics , 1984 .
[15] C. Klein,et al. Young's modulus and Poisson's ratio of CVD diamond , 1993 .
[16] E. Grüneisen. Einfluß der Temperatur auf die Kompressibilität der Metalle , 1910 .
[17] R. Baughman,et al. Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.
[18] John R. Dorgan,et al. The bulk modulus and Poisson's ratio of “incompressible” materials , 2008 .
[19] R. Lakes,et al. Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam , 1994, Journal of Materials Science.
[20] R. Bogoslovov,et al. Effect of structural arrest on Poisson's ratio in nanoreinforced elastomers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] R. Clifton,et al. The Physics of Large Deformation of Crystalline Solids (Springer Tracts in Natural Philosophy, Vol. 14) , 1969 .
[22] R. S. Lakes,et al. Non-linear properties of metallic cellular materials with a negative Poisson's ratio , 1992 .
[23] E. Anastassakis,et al. Elastic properties of textured diamond and silicon , 2001 .
[24] R. Yang,et al. Ductile titanium alloy with low Poisson's ratio. , 2007, Physical review letters.
[25] T. Darling,et al. Beryllium's monocrystal and polycrystal elastic constants , 2004 .
[26] M. D'evelyn,et al. Elastic properties of polycrystalline cubic boron nitride and diamond by dynamic resonance measurements , 1997 .
[27] Herbert F. Wang,et al. Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .
[28] H. Ledbetter,et al. Some remarks on the range of Poisson's ratio in isotropic linear elasticity , 2012 .
[29] T. Rouxel,et al. Poisson's ratio and the densification of glass under high pressure. , 2008, Physical review letters.
[30] L. F.. A Treatise on the Mathematical Theory of Elasticity , Nature.
[31] J. Parise,et al. Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.
[32] Shaochen Chen,et al. Three‐Dimensional Polymer Constructs Exhibiting a Tunable Negative Poisson's Ratio , 2011, Advanced functional materials.
[33] L. Colombo,et al. Nonlinear elasticity in nanostructured materials , 2011 .
[34] G. Lamé,et al. Leçons Sur la Théorie Mathématique de L'élasticité des Corps Solides , 2009 .
[35] J. Bell. The Physics of Large Deformation of Crystalline Solids , 1968 .
[36] Hong Hu,et al. A review on auxetic structures and polymeric materials , 2010 .
[37] Luzhuo Chen,et al. Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures , 2009 .
[38] Lawrence F. Shampine,et al. Non-negative solutions of ODEs , 2005, Appl. Math. Comput..
[39] Igor Emri,et al. Poisson's Ratio in Linear Viscoelasticity – A Critical Review , 2002 .
[40] S. Spinner. Elastic Moduli of Glasses by a Dynamic Method , 1954 .
[41] R. Lakes. Foam Structures with a Negative Poisson's Ratio , 1987, Science.
[42] Failure of classical elasticity in auxetic foams , 2012, 1208.5793.
[43] K. Chawla,et al. Mechanical Behavior of Materials , 1998 .
[44] G. Milton. Composite materials with poisson's ratios close to — 1 , 1992 .
[45] M. Rovati. Directions of auxeticity for monoclinic crystals , 2004 .
[46] L. E. Malvern. Introduction to the mechanics of a continuous medium , 1969 .