Robust macroscale superlubricity enabled by tribo-induced structure evolution of MoS2/metal superlattice coating

[1]  Hongxia Yan,et al.  Synergistic effect of novel hyperbranched polysiloxane and Ti3C2T MXene/MoS2 hybrid filler towards desirable mechanical and tribological performance of bismaleimide composites , 2022, Composites Part B: Engineering.

[2]  D. Yang,et al.  Enhanced electromechanical properties of natural rubber via the synergistic effect of poly(catechol/polyamine) modification and Ag deposition on TiO2 nanoparticles , 2022, Composites Part B: Engineering.

[3]  Yi-long Liang,et al.  Synergistic effect of cementite amorphization and oxidation on forming a nanocomposite self-lubricating surface during sliding , 2022, Composites Part B: Engineering.

[4]  T. Han,et al.  W–Cu composites with excellent comprehensive properties , 2022, Composites Part B: Engineering.

[5]  Xinchun Chen,et al.  A New Pathway for Superlubricity in a Multilayered MoS2-Ag Film under Cryogenic Environment. , 2021, Nano letters.

[6]  F. Sen,et al.  Microscopic and atomistic mechanisms of sliding friction of MoS2: Effects of undissociated and dissociated H2O , 2021 .

[7]  M. Herbig,et al.  Reactive wear protection through strong and deformable oxide nanocomposite surfaces , 2021, Nature Communications.

[8]  Kenji Watanabe,et al.  UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures , 2021, Nature Materials.

[9]  Yaoyao Zhou,et al.  Multilayer-growth of TiAlN/WS self-lubricating composite coatings with high adhesion and their cutting performance on titanium alloy , 2021 .

[10]  H. Xin,et al.  Ultrahigh tribocorrosion resistance of metals enabled by nano-layering , 2021, Acta Materialia.

[11]  T. Polcar,et al.  Tribological behaviour of Mo-S-N solid lubricant coatings in vacuum, nitrogen gas and elevated temperatures , 2021 .

[12]  Dan Guo,et al.  Intelligent lubricating materials: A review , 2020 .

[13]  A. T. Johnson,et al.  Nanoscale Friction Behavior of Transition-Metal Dichalcogenides: Role of the Chalcogenide. , 2020, ACS nano.

[14]  M. Urbakh,et al.  Origin of Friction in Superlubric Graphite Contacts. , 2020, Physical review letters.

[15]  Lei Chen,et al.  Toward Robust Macroscale Superlubricity on Engineering Steel Substrate , 2020, Advanced materials.

[16]  Q. Zheng,et al.  Characterization of a Microscale Superlubric Graphite Interface. , 2020, Physical review letters.

[17]  G. Paterakis,et al.  Tunable macroscale structural superlubricity in two-layer graphene via strain engineering , 2020, Nature Communications.

[18]  D. Wei,et al.  Adjusting function of MoS2 on the high-speed emergency braking properties of copper-based brake pad and the analysis of relevant tribo-film of eddy structure , 2020 .

[19]  Q. Zheng,et al.  Structural Superlubricity Based on Crystalline Materials. , 2020, Small.

[20]  Xiaojun Xu,et al.  The effect of atmosphere on the tribological behavior of magnetron sputtered MoS2 coatings , 2019, Surface and Coatings Technology.

[21]  Thomas J. Kempa,et al.  Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties , 2019, Nature Nanotechnology.

[22]  Quanshui Zheng,et al.  Structural superlubricity and ultralow friction across the length scales , 2018, Nature.

[23]  S. Pennycook,et al.  Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy , 2018, Advanced materials.

[24]  Jianbin Luo,et al.  Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure , 2018, Advanced science.

[25]  Quanshui Zheng,et al.  Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions , 2018, Nature Materials.

[26]  E. Coy,et al.  Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: Temperature effects on the nanocomposite structure , 2018 .

[27]  A. Erdemir,et al.  Superlubricity: Friction’s vanishing act , 2018 .

[28]  B. Narayanan,et al.  Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity , 2018, Nature Communications.

[29]  Peter V Coveney,et al.  Graphene–Graphene Interactions: Friction, Superlubricity, and Exfoliation , 2018, Advanced materials.

[30]  Z. Zou,et al.  Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution , 2018 .

[31]  Kenneth Holmberg,et al.  Influence of tribology on global energy consumption, costs and emissions , 2017, Friction.

[32]  I. Štich,et al.  Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size. , 2017, ACS nano.

[33]  Xianlong Wei,et al.  Superlubricity between MoS2 Monolayers , 2017, Advanced materials.

[34]  Jian Lu,et al.  Dual-phase nanostructuring as a route to high-strength magnesium alloys , 2017, Nature.

[35]  Jianbin Luo,et al.  Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere , 2017, Nature Communications.

[36]  Aleksandar Staykov,et al.  Macroscale Superlubricity of Multilayer Polyethylenimine/Graphene Oxide Coatings in Different Gas Environments. , 2016, ACS applied materials & interfaces.

[37]  Sanket A. Deshmukh,et al.  Macroscale superlubricity enabled by graphene nanoscroll formation , 2015, Science.

[38]  Moon J. Kim,et al.  In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide. , 2015, ACS nano.

[39]  Sanket A. Deshmukh,et al.  Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer , 2014 .

[40]  Qing Chen,et al.  Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. , 2013, Nature nanotechnology.

[41]  Quanshui Zheng,et al.  Observation of microscale superlubricity in graphite. , 2012, Physical review letters.

[42]  M. Urbakh,et al.  Low friction and rotational dynamics of crystalline flakes in solid lubrication , 2011, 1108.2400.

[43]  M. Koyama,et al.  A computational chemistry study on friction of h-MoS(2). Part I. Mechanism of single sheet lubrication. , 2009, The journal of physical chemistry. B.

[44]  S. Suresh,et al.  Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature , 2002, Science.

[45]  J. M. Martín,et al.  Super-low friction of MoS 2 coatings in various environments , 1996 .

[46]  J. M. Martín,et al.  Superlubricity of MoS2: crystal orientation mechanisms , 1994 .

[47]  J. M. Martín,et al.  Superlow friction of oxygen-free MoS2 coatings in ultrahigh vacuum , 1993 .

[48]  J. M. Martín,et al.  Superlubricity of molybdenum disulphide. , 1993, Physical review. B, Condensed matter.

[49]  J. Venables,et al.  Nucleation and growth of thin films , 1984 .