The trace of spatial brownian motion is capacity-equivalent to the unit square
暂无分享,去创建一个
[1] L. Carleson. Selected Problems on Exceptional Sets , 1998 .
[2] Y. Peres. Intersection-equivalence of Brownian paths and certain branching processes , 1996 .
[3] R. Pemantle,et al. Galton-Watson Trees with the Same Mean Have the Same Polar Sets , 1995, math/0404053.
[4] Russell Lyons,et al. Random Walks, Capacity and Percolation on Trees , 1992 .
[5] S. James Taylor. The measure theory of random fractals , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] J. Rosen. Tanaka's Formula and Renormalization for Intersections of Planar Brownian Motion , 1986 .
[7] J. Kahane. Some Random Series of Functions , 1985 .
[8] E. Dynkin,et al. Random fields associated with multiple points of the Brownian motion , 1985 .
[9] M. Aizenman. The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory , 1985 .
[10] G. Lawler. The probability of intersection of independent random walks in four dimensions , 1982 .
[11] J. Hawkes. Local properties of some Gaussian processes , 1977 .
[12] J. Kingman. An Intrinsic Description of Local Time , 1973 .
[13] Z. Ciesielski,et al. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path , 1962 .
[14] Y. Peres,et al. Random walks on a tree and capacity in the interval , 1992 .
[15] J. Gall,et al. Some properties of planar brownian motion , 1992 .
[16] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[17] Thomas S. Salisbury,et al. Capacity and energy for multiparameter Markov processes , 1989 .
[18] E. Dynkin. Self-Intersection Gauge for Random Walks and for Brownian Motion , 1988 .
[19] J. Rosen. A renormalized local time for multiple intersections of planar brownian motion , 1986 .
[20] M. Yor,et al. Precisions sur l'existence et la continuite des temps locaux d'intersection du mouvement brownien dans ℝ2 , 1986 .
[21] M. Yor. Renormalisation et convergence en loi pour les temps locaux d'intersection du mouvement Brownien dans ℝ3 , 1985 .
[22] K. Chung. Probabilistic approach in potential theory to the equilibrium problem , 1973 .