The trace of spatial brownian motion is capacity-equivalent to the unit square

[1]  L. Carleson Selected Problems on Exceptional Sets , 1998 .

[2]  Y. Peres Intersection-equivalence of Brownian paths and certain branching processes , 1996 .

[3]  R. Pemantle,et al.  Galton-Watson Trees with the Same Mean Have the Same Polar Sets , 1995, math/0404053.

[4]  Russell Lyons,et al.  Random Walks, Capacity and Percolation on Trees , 1992 .

[5]  S. James Taylor The measure theory of random fractals , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  J. Rosen Tanaka's Formula and Renormalization for Intersections of Planar Brownian Motion , 1986 .

[7]  J. Kahane Some Random Series of Functions , 1985 .

[8]  E. Dynkin,et al.  Random fields associated with multiple points of the Brownian motion , 1985 .

[9]  M. Aizenman The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory , 1985 .

[10]  G. Lawler The probability of intersection of independent random walks in four dimensions , 1982 .

[11]  J. Hawkes Local properties of some Gaussian processes , 1977 .

[12]  J. Kingman An Intrinsic Description of Local Time , 1973 .

[13]  Z. Ciesielski,et al.  First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path , 1962 .

[14]  Y. Peres,et al.  Random walks on a tree and capacity in the interval , 1992 .

[15]  J. Gall,et al.  Some properties of planar brownian motion , 1992 .

[16]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[17]  Thomas S. Salisbury,et al.  Capacity and energy for multiparameter Markov processes , 1989 .

[18]  E. Dynkin Self-Intersection Gauge for Random Walks and for Brownian Motion , 1988 .

[19]  J. Rosen A renormalized local time for multiple intersections of planar brownian motion , 1986 .

[20]  M. Yor,et al.  Precisions sur l'existence et la continuite des temps locaux d'intersection du mouvement brownien dans ℝ2 , 1986 .

[21]  M. Yor Renormalisation et convergence en loi pour les temps locaux d'intersection du mouvement Brownien dans ℝ3 , 1985 .

[22]  K. Chung Probabilistic approach in potential theory to the equilibrium problem , 1973 .