Modelling the fast fluorescence rise of photosynthesis

We construct an ODE model for the fast fluorescence rise of photosynthesis by combining the current reaction scheme of the PS II two-electron-gate with a quasi steady-state description of the fast processes of excitation energy transfer and primary charge separation. The model is fitted to measured induction curves with a multiple shooting algorithm, and remarkably good approximations of the data are obtained. Model refinements are discussed focusing on PS II heterogeneity, and on PS I.

[1]  B. Forbush,et al.  Reaction between primary and secondary electron acceptors of photosystem II of photosynthesis. , 1968, Biochimica et biophysica acta.

[2]  Johannes P. Schlöder,et al.  Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung , 1988 .

[3]  H. V. Gorkom,et al.  10 - Fluorescence Measurements in the Study of Photosystem II Electron Transport , 1986 .

[4]  U. Schreiber,et al.  The Polyphasic Rise of Chlorophyll Fluorescence upon Onset of Strong Continuous Illumination: I. Saturation Characteristics and Partial Control by the Photosystem II Acceptor Side , 1987 .

[5]  U. Schreiber,et al.  Practical Applications of Fluorometric Methods to Algae and Higher Plant Research , 1986 .

[6]  U. Schreiber,et al.  The Polyphasic Rise of Chlorophyll Fluorescence upon Onset of Strong Continuous Illumination: II. Partial Control by the Photosystem II Donor Side and Possible Ways of Interpretation , 1987 .

[7]  W. Haehnel Photosynthetic Electron Transport in Higher Plants , 1984 .

[8]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .

[9]  U. Schreiber,et al.  Chlorophyll Fluorescence Induction in Green Plants at Oxygen Deficiency , 1972 .

[10]  H. Böhme Quantitative determination of ferredoxin, ferredoxin-NADP+ reductase and plastocyanin in spinach chloroplasts. , 1978, European Journal of Biochemistry.

[11]  W. Leibl,et al.  Theoretical and experimental study of trapping times and antenna organization in pea chloroplasts by means of the artificial fluorescence quencher m-dinitrobenzene , 1988 .

[12]  A. Holzwarth,et al.  Kinetic and Energetic Model for the Primary Processes in Photosystem II. , 1988, Biophysical journal.

[13]  D. Arnon,et al.  Cytochrome b-559 and proton conductance in oxygenic photosynthesis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Baker,et al.  Interactions Between Photosystems , 1987 .

[15]  H. Bock Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics , 1981 .

[16]  B. Kok Photosynthetic electron transport , 1963 .

[17]  R. Windecker,et al.  EFFECT OF LIGHT-INDUCED CHANGES IN THYLAKOID VOLTAGE ON CHLOROPHYLL FLUORESCENCE OF AEGOPODIUM PODAGRARIA LEAVES , 1991 .

[18]  A. Crofts,et al.  The electrochemical domain of photosynthesis , 1983 .

[19]  A. Rutherford,et al.  Thermoluminescence from photosynthetic membranes. , 1986 .

[20]  Govindjee,et al.  Fluorescence Properties of Chlorophyll b - and Chlorophyll c -Containing Algae , 1986 .

[21]  L. Duysens Introduction to (Bacterio)chlorophyll Emission: A Historical Perspective , 1986 .

[22]  D. Arnon,et al.  Protonophores induce plastoquinol oxidation and quench chloroplast fluorescence: Evidence for a cyclic, proton-conducting pathway in oxygenic photosynthesis. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Briantais,et al.  18 – Chlorophyll a Fluorescence of Higher Plants: Chloroplasts and Leaves , 1986 .

[24]  P. Jursinic,et al.  Delayed Fluorescence: Current Concepts and Status , 1986 .