Possible target corridor for sustainable use of global material resources

Many countries have started to develop policy programs for the sustainable use of natural resources. Indicators and targets can cover both a territorial and a life-cycle-wide global perspective. This article focuses on how a safe operating space for global material resource use can be outlined based on existing economy-wide material flow indicators. It reflects on issues such as scale and systems perspective, as the choice of indicators determines the target "valves" of the socio-industrial metabolism. It considers environmental pressures and social aspects of safe and fair resource use. Existing proposals for resource consumption targets are reviewed, partially revisited, and taken as a basis to outline potential target values for a safe operating space for the extraction and use of minerals and biomass by final consumption. A potential sustainability corridor is derived with the Total Material Consumption of abiotic resources ranging from 6 to 12 t/person, the Total Material Consumption of biotic resources not exceeding 2 t/person, and the Raw Material Consumption of used biotic and abiotic materials ranging from 3 to 6 t/person until 2050. For policy, a "10-2-5 target triplet" can provide orientation, when the three indicators are assigned values of 10, 2, and 5 t/person, respectively.

[1]  Stefan Bringezu,et al.  Total Material Requirement of Growing China: 1995-2008 , 2013 .

[2]  Stefanie Hellweg,et al.  Applying cumulative exergy demand (CExD) indicators to the ecoinvent database , 2006 .

[3]  Edward B Barbier,et al.  Economics, Natural-Resource Scarcity and Development (Routledge Revivals) : Conventional and Alternative Views , 2013 .

[4]  Pilar Swart,et al.  Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data , 2013 .

[5]  Stefan Bringezu,et al.  Assessment of the EU thematic strategy on the sustainable use of natural resources , 2006 .

[6]  S. Bringezu,et al.  Ziele und Indikatoren für die Umsetzung von ProgRess , 2013 .

[7]  Ton Bhrs Environmental Space as a Basis for Legitimating Global Governance of Environmental Limits , 2009, Global Environmental Politics.

[8]  H. Daly Toward some operational principles of sustainable development , 1990 .

[9]  Helmuth Trischler The Anthropocene , 2016, NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin.

[10]  J. Gustavsson Global food losses and food waste , 2011 .

[11]  Stefan Bringezu,et al.  Politische und rechtliche Ansätze für inputorientierte Ressourcenziele in Europa und weltweit , 2013 .

[12]  Stefan Bringezu,et al.  Visions of a sustainable resource use , 2009 .

[13]  I. Wernick,et al.  Material Flows in the United States , 2008 .

[14]  Robert U. Ayres,et al.  Exergy flows in the economy: efficiency and dematerialization , 2002 .

[15]  P. Crutzen,et al.  The Anthropocene: conceptual and historical perspectives , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Allison M. Leach,et al.  A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment , 2012 .

[17]  Z. Klimont Our Nutrient World: the challenge to produce more food and energy with less pollution , 2013 .

[18]  M. Aldaya,et al.  Measuring water use in a green economy , 2012 .

[19]  Josette Garnier,et al.  Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate , 2012 .

[20]  H. Schütz,et al.  Rationale for and Interpretation of Economy‐Wide Materials Flow Analysis and Derived Indicators , 2003 .

[21]  G. H. Brundtland World Commission on environment and development , 1985 .

[22]  Kate Raworth,et al.  A Safe and Just Space for Humanity: Can we live within the doughnut? , 2012 .

[23]  Danièle Revel,et al.  Decoupling natural resource use and environmental impacts from economic growth , 2011 .

[24]  Simon Warren,et al.  Methodology of metal criticality determination. , 2012, Environmental science & technology.

[25]  S. Suh,et al.  The material footprint of nations , 2013, Proceedings of the National Academy of Sciences.

[26]  H. Schmincke Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre , 1993 .

[27]  Bernd Meyer,et al.  Macroeconomic modelling of sustainable development and the links between the economy and the environment , 2012 .

[28]  Holger Rohn,et al.  Eight Tons of Material Footprint—Suggestion for a Resource Cap for Household Consumption in Finland , 2014 .

[29]  U. Sonesson,et al.  Global food losses and food waste: extent, causes and prevention , 2011 .

[30]  Karlson Hargroves,et al.  Decoupling 2: Technologies, opportunities and policy options , 2014 .

[31]  Y. Moriguchi,et al.  Resource flows : the material basis of industrial economies , 1997 .

[32]  S. Carpenter,et al.  Planetary boundaries: Guiding human development on a changing planet , 2015, Science.

[33]  E. Hey,et al.  The precautionary principle and international law: the challenge of implementation. , 1996 .

[34]  M. Handzic 5 , 1824, The Banality of Heidegger.

[35]  Stefan Bringezu,et al.  Beyond biofuels: assessing global land use for domestic consumption of biomass: a conceptual and empirical contribution to sustainable management of global resources. , 2012 .

[36]  Carl Vadenbo,et al.  Impact assessment of abiotic resources in LCA: quantitative comparison of selected characterization models. , 2014, Environmental science & technology.

[37]  Friedrich Schmidt-Bleek,et al.  Wieviel Umwelt braucht der Mensch? : MIPS-das Maß für ökologisches Wirtschaften , 1994 .

[38]  C. Oppenheimer Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815 , 2003 .

[39]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[40]  Stefan Bringezu,et al.  Sustainable Resource Management , 2009 .

[41]  Millenium Ecosystem Assessment Ecosystems and human well-being: synthesis , 2005 .

[42]  Paul Ekins,et al.  Reducing Resoucres Consumption - A Proposal for Global Resource and Environmental Policy , 2014 .

[43]  Maite Martinez-Aldaya,et al.  Measuring water use in a green economy, A report of the Working Group on water Efficiency to the International Resource Panel , 2012 .

[44]  J. Olsen,et al.  The European Commission , 2020, The European Union.

[45]  R. Howarth,et al.  Fixing the global nitrogen problem. , 2010, Scientific American.

[46]  M. Swilling,et al.  Assessing global land use : balancing consumption with sustainable supply , 2014 .

[47]  Neo D. Martinez,et al.  Approaching a state shift in Earth’s biosphere , 2012, Nature.

[48]  COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS , 2008 .

[49]  Rainer Zah,et al.  Future perspectives of 2nd generation biofuels , 2010 .

[50]  Margni Manuele,et al.  Recommendations for Life Cycle Impact Assessment in the European context - based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System - ILCD handbook) , 2011 .

[51]  Dominic Wittmer,et al.  Environmental pressures from European consumption and production : a study in integrated environmental and economic analysis , 2013 .

[52]  Stefan Bringezu,et al.  Key Elements for Economy-wide Sustainable Resource Management , 2011 .

[53]  Stefan Bringezu,et al.  Towards increasing resource productivity : how to measure the total material consumption of regional or national economies? , 1993 .

[54]  J. Syvitski,et al.  Sediment flux and the Anthropocene , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  H. Haberl,et al.  Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems , 2007, Proceedings of the National Academy of Sciences.

[56]  E. Hertwich,et al.  Carbon footprint of nations: a global, trade-linked analysis. , 2009, Environmental science & technology.