Skew partial fields, multilinear representations of matroids, and a matrix tree theorem
暂无分享,去创建一个
[1] Thomas Zaslavsky,et al. Biased graphs. I. Bias, balance, and gains , 1989, J. Comb. Theory, Ser. B.
[2] Geoff Whittle,et al. Stabilizers of Classes of Representable Matroids , 1999, J. Comb. Theory, Ser. B.
[3] Peter J. Cameron,et al. Chapter 2 – Projective and Affine Geometry over Division Rings , 1995 .
[4] A. Dress,et al. Geometric algebra for combinatorial geometries , 1989 .
[5] W. T. Tutte. Lectures on matroids , 1965 .
[6] Charles Semple,et al. k-Regular Matroids , 1996, DMTCS.
[7] R. Pemantle,et al. Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.
[8] David G. Wagner,et al. Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..
[9] D. A. Stone,et al. Projective Orientations of Matroids , 1995 .
[10] Charles Semple,et al. Generalized Delta?-Y Exchange and k-Regular Matroids , 2000, J. Comb. Theory, Ser. B.
[11] W. T. Tutte,et al. The Dissection of Rectangles Into Squares , 1940 .
[12] Dillon Mayhew,et al. Stability, fragility, and Rotaʼs Conjecture , 2010, J. Comb. Theory, Ser. B.
[13] S.H.M. vanZwam. Partial fields in matroid theory , 2009 .
[14] Petter Brändén,et al. On the half-plane property and the Tutte group of a matroid , 2010, J. Comb. Theory, Ser. B.
[15] Jon Lee,et al. A Characterization of the Orientations of Ternary Matroids , 1999, J. Comb. Theory, Ser. B.
[16] Tom Brylawski,et al. Modular constructions for combinatorial geometries , 1975 .
[17] WellingtonNew ZealandE. On matroids representable over GF(3) and other fields , 1997 .
[18] Thomas A. Dowling,et al. A class of geometric lattices based on finite groups , 1973 .
[19] Geoff Whittle,et al. On Maximum-Sized Near-Regular and -Matroids , 1998, Graphs Comb..
[20] Dillon Mayhew,et al. The excluded minors for near-regular matroids , 2009, Eur. J. Comb..
[21] N. White,et al. The bracket ring of a combinatorial geometry. I , 1975 .
[22] Alexei E. Ashikhmin,et al. Almost Affine Codes , 1998, Des. Codes Cryptogr..
[23] Amh Bert Gerards. A short proof of Tutte's characterization of totally unimodular matrices , 1989 .
[24] Alan D. Sokal,et al. Noncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities I. Generalizations of the Capelli and Turnbull identities , 2008, Electron. J. Comb..
[25] Rudi Pendavingh,et al. Lifts of matroid representations over partial fields , 2008, J. Comb. Theory, Ser. B.
[26] Dillon Mayhew,et al. An Obstacle to a Decomposition Theorem for Near-Regular Matroids , 2009, SIAM J. Discret. Math..
[27] Geoff Whittle,et al. A Characterization of the Matroids Representable over GF(3) and the Rationals , 1995, J. Comb. Theory, Ser. B.
[28] Charles Semple,et al. Partial Fields and Matroid Representation , 1996 .
[29] R. Lyons. Determinantal probability measures , 2002, math/0204325.
[30] Petter Brändén. Obstructions to determinantal representability , 2011 .
[31] Jon Lee,et al. The incidence structure of subspaces with well-scaled frames , 1990, J. Comb. Theory, Ser. B.
[32] H. Whitney. Geometric Integration Theory , 1957 .
[33] Rudi Pendavingh,et al. Confinement of matroid representations to subsets of partial fields , 2008, J. Comb. Theory, Ser. B.
[34] Henk C. A. van Tilborg,et al. Two “Dual” Families of Nearly-Linear Codes over ℤ p , p odd , 2001, Applicable Algebra in Engineering, Communication and Computing.
[35] D. Vertigan. Latroids and their representation by codes over modules , 2003 .
[36] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[37] M. Lunelli,et al. Representation of matroids , 2002, math/0202294.