Skew partial fields, multilinear representations of matroids, and a matrix tree theorem

We extend the notion of representation of a matroid to algebraic structures that we call skew partial fields. Our definition of such representations extends [email protected]?s definition, using chain groups. We show how such representations behave under duality and minors, we extend [email protected]?s representability criterion to this new class, and we study the generator matrices of the chain groups. An example shows that the class of matroids representable over a skew partial field properly contains the class of matroids representable over a skew field. Next, we show that every multilinear representation of a matroid can be seen as a representation over a skew partial field. Finally we study a class of matroids called quaternionic unimodular. We prove a generalization of the matrix tree theorem for this class.

[1]  Thomas Zaslavsky,et al.  Biased graphs. I. Bias, balance, and gains , 1989, J. Comb. Theory, Ser. B.

[2]  Geoff Whittle,et al.  Stabilizers of Classes of Representable Matroids , 1999, J. Comb. Theory, Ser. B.

[3]  Peter J. Cameron,et al.  Chapter 2 – Projective and Affine Geometry over Division Rings , 1995 .

[4]  A. Dress,et al.  Geometric algebra for combinatorial geometries , 1989 .

[5]  W. T. Tutte Lectures on matroids , 1965 .

[6]  Charles Semple,et al.  k-Regular Matroids , 1996, DMTCS.

[7]  R. Pemantle,et al.  Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.

[8]  David G. Wagner,et al.  Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..

[9]  D. A. Stone,et al.  Projective Orientations of Matroids , 1995 .

[10]  Charles Semple,et al.  Generalized Delta?-Y Exchange and k-Regular Matroids , 2000, J. Comb. Theory, Ser. B.

[11]  W. T. Tutte,et al.  The Dissection of Rectangles Into Squares , 1940 .

[12]  Dillon Mayhew,et al.  Stability, fragility, and Rotaʼs Conjecture , 2010, J. Comb. Theory, Ser. B.

[13]  S.H.M. vanZwam Partial fields in matroid theory , 2009 .

[14]  Petter Brändén,et al.  On the half-plane property and the Tutte group of a matroid , 2010, J. Comb. Theory, Ser. B.

[15]  Jon Lee,et al.  A Characterization of the Orientations of Ternary Matroids , 1999, J. Comb. Theory, Ser. B.

[16]  Tom Brylawski,et al.  Modular constructions for combinatorial geometries , 1975 .

[17]  WellingtonNew ZealandE On matroids representable over GF(3) and other fields , 1997 .

[18]  Thomas A. Dowling,et al.  A class of geometric lattices based on finite groups , 1973 .

[19]  Geoff Whittle,et al.  On Maximum-Sized Near-Regular and -Matroids , 1998, Graphs Comb..

[20]  Dillon Mayhew,et al.  The excluded minors for near-regular matroids , 2009, Eur. J. Comb..

[21]  N. White,et al.  The bracket ring of a combinatorial geometry. I , 1975 .

[22]  Alexei E. Ashikhmin,et al.  Almost Affine Codes , 1998, Des. Codes Cryptogr..

[23]  Amh Bert Gerards A short proof of Tutte's characterization of totally unimodular matrices , 1989 .

[24]  Alan D. Sokal,et al.  Noncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities I. Generalizations of the Capelli and Turnbull identities , 2008, Electron. J. Comb..

[25]  Rudi Pendavingh,et al.  Lifts of matroid representations over partial fields , 2008, J. Comb. Theory, Ser. B.

[26]  Dillon Mayhew,et al.  An Obstacle to a Decomposition Theorem for Near-Regular Matroids , 2009, SIAM J. Discret. Math..

[27]  Geoff Whittle,et al.  A Characterization of the Matroids Representable over GF(3) and the Rationals , 1995, J. Comb. Theory, Ser. B.

[28]  Charles Semple,et al.  Partial Fields and Matroid Representation , 1996 .

[29]  R. Lyons Determinantal probability measures , 2002, math/0204325.

[30]  Petter Brändén Obstructions to determinantal representability , 2011 .

[31]  Jon Lee,et al.  The incidence structure of subspaces with well-scaled frames , 1990, J. Comb. Theory, Ser. B.

[32]  H. Whitney Geometric Integration Theory , 1957 .

[33]  Rudi Pendavingh,et al.  Confinement of matroid representations to subsets of partial fields , 2008, J. Comb. Theory, Ser. B.

[34]  Henk C. A. van Tilborg,et al.  Two “Dual” Families of Nearly-Linear Codes over ℤ p , p odd , 2001, Applicable Algebra in Engineering, Communication and Computing.

[35]  D. Vertigan Latroids and their representation by codes over modules , 2003 .

[36]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[37]  M. Lunelli,et al.  Representation of matroids , 2002, math/0202294.