暂无分享,去创建一个
[1] G. Wahba,et al. A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .
[2] Francesco Dinuzzo. Learning functions with kernel methods , 2011 .
[3] Lawrence K. Saul,et al. Kernel Methods for Deep Learning , 2009, NIPS.
[4] Qi Ye,et al. Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators , 2011, Numerische Mathematik.
[5] Robert Schaback,et al. Stability of kernel-based interpolation , 2010, Adv. Comput. Math..
[6] Ivor W. Tsang,et al. Two-Layer Multiple Kernel Learning , 2011, AISTATS.
[7] Ethem Alpaydin,et al. Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..
[8] A. Hinrichs,et al. Stuttgart Fachbereich Mathematik Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions , 2015 .
[9] Tomaso A. Poggio,et al. When and Why Are Deep Networks Better Than Shallow Ones? , 2017, AAAI.
[10] Shyam Visweswaran,et al. Deep Multiple Kernel Learning , 2013, 2013 12th International Conference on Machine Learning and Applications.
[11] Andrew Gordon Wilson,et al. Deep Kernel Learning , 2015, AISTATS.
[12] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[13] Stéphane Mallat,et al. Understanding deep convolutional networks , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[14] Charles A. Micchelli,et al. On Learning Vector-Valued Functions , 2005, Neural Computation.
[15] Roberto Croce. Numerische Simulation der Interaktion von inkompressiblen Zweiphasenströmungen mit Starrkörpern in drei Raumdimensionen , 2010 .
[16] Michael Griebel,et al. Approximation of bi-variate functions: singular value decomposition versus sparse grids , 2014 .
[17] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[18] Neil D. Lawrence,et al. Deep Gaussian Processes , 2012, AISTATS.
[19] Kurt Hornik,et al. Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.
[20] Walid Mahdi,et al. Deep multilayer multiple kernel learning , 2016, Neural Computing and Applications.
[21] Alexander J. Smola,et al. Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization , 2016, NIPS.
[22] Michael I. Jordan,et al. Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.
[23] Anthony Widjaja,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.
[24] Aicke Hinrichs,et al. Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions , 2016, Numerische Mathematik.
[25] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[26] Michael Griebel,et al. Error Estimates for Multivariate Regression on Discretized Function Spaces , 2017, SIAM J. Numer. Anal..
[27] Alexander Binder,et al. Explaining nonlinear classification decisions with deep Taylor decomposition , 2015, Pattern Recognit..
[28] M. Urner. Scattered Data Approximation , 2016 .
[29] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..