Laser-driven soft-X-ray undulator source

High-intensity X-ray sources such as synchrotrons and free-electron lasers need large particle accelerators to drive them. The demonstration of a synchrotron X-ray source that uses a laser-driven particle accelerator could widen the availability of intense X-rays for research in physics, materials science and biology. Synchrotrons and free-electron lasers are the most powerful sources of X-ray radiation. They constitute invaluable tools for a broad range of research1; however, their dependence on large-scale radiofrequency electron accelerators means that only a few of these sources exist worldwide. Laser-driven plasma-wave accelerators2,3,4,5,6,7,8,9,10 provide markedly increased accelerating fields and hence offer the potential to shrink the size and cost of these X-ray sources to the university-laboratory scale. Here, we demonstrate the generation of soft-X-ray undulator radiation with laser-plasma-accelerated electron beams. The well-collimated beams deliver soft-X-ray pulses with an expected pulse duration of ∼10 fs (inferred from plasma-accelerator physics). Our source draws on a 30-cm-long undulator11 and a 1.5-cm-long accelerator delivering stable electron beams10 with energies of ∼210 MeV. The spectrum of the generated undulator radiation typically consists of a main peak centred at a wavelength of ∼18 nm (fundamental), a second peak near ∼9 nm (second harmonic) and a high-energy cutoff at ∼7 nm. Magnetic quadrupole lenses11 ensure efficient electron-beam transport and demonstrate an enabling technology for reproducible generation of tunable undulator radiation. The source is scalable to shorter wavelengths by increasing the electron energy. Our results open the prospect of tunable, brilliant, ultrashort-pulsed X-ray sources for small-scale laboratories.

[1]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[2]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[3]  Nakajima,et al.  Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. , 1995, Physical review letters.

[4]  P. Sprangle,et al.  Nonlinear theory of intense laser-plasma interactions. , 1990, Physical review letters.

[5]  Robert Walgate,et al.  Synchrotron radiation , 1984, Nature.

[6]  M. Ferrario,et al.  Design considerations for table-top, laser-based VUV and X-ray free electron lasers , 2007 .

[7]  Joshua W. Shaevitz,et al.  Massively parallel X-ray holography , 2008 .

[8]  Sebastian M. Pfotenhauer,et al.  A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator , 2008 .

[9]  F. R. Elder,et al.  Radiation from Electrons in a Synchrotron , 1947 .

[10]  Coherent betatron radiation from laser-wakefield accelerated bunches of monoenergetic electrons , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[11]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[12]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[13]  Eric Esarey,et al.  Nonparaxial propagation of ultrashort laser pulses in plasma channels , 1999 .

[14]  T. Auguste,et al.  Focusing behavior of multiterawatt laser pulse in a H2 gas jet , 1994 .

[15]  Erik Lefebvre,et al.  Principles and applications of compact laser–plasma accelerators , 2008 .

[16]  P. Kirkpatrick,et al.  Formation of optical images by X-rays. , 1948, Journal of the Optical Society of America.

[17]  A. Rakić,et al.  Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. , 1995, Applied optics.

[18]  D Neely,et al.  Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry. , 2010, Physical review letters.

[19]  Decker,et al.  Group velocity of large amplitude electromagnetic waves in a plasma. , 1995, Physical review letters.

[20]  Zhirong Huang,et al.  A review of x-ray free-electron laser theory. , 2007 .

[21]  Horton,et al.  Pump depletion in the plasma-beat-wave accelerator. , 1986, Physical review. A, General physics.

[22]  W. Mori,et al.  Nonlinear theory for relativistic plasma wakefields in the blowout regime. , 2006, Physical review letters.

[23]  Kazuhisa Nakajima,et al.  Towards a table-top free-electron laser , 2008 .

[24]  Paul Gibbon,et al.  Short Pulse Laser Interactions with Matter: An Introduction , 2005 .

[25]  S. Hooker,et al.  Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. , 2002, Physical review letters.

[26]  Efficient electron injection into plasma waves using higher-order laser modes , 2006 .

[27]  K. Halbach Design of permanent multipole magnets with oriented rare earth cobalt material , 1980 .

[28]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[29]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[30]  K. Holldack,et al.  Femtosecond undulator radiation from sliced electron bunches. , 2006, Physical review letters.

[31]  P. Elleaume,et al.  ACCURATE AND EFFICIENT COMPUTATION OF SYNCHROTRON RADIATION IN THE NEAR FIELD REGION , 1998 .

[32]  Su,et al.  Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[33]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[34]  M. Bussmann,et al.  Characterization and tuning of ultrahigh gradient permanent magnet quadrupoles , 2009, 0902.2371.

[35]  S. V. Bulanov,et al.  Controlled electron injection into the wake wave using plasma density inhomogeneity , 2008 .

[36]  F. Krausz Attosecond Physics , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[37]  Ferenc Krausz,et al.  GeV-scale electron acceleration in a gas-filled capillary discharge waveguide , 2007 .

[38]  V Malka,et al.  Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. , 2009, Physical review letters.

[39]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[40]  Wim Leemans,et al.  Trapping, dark current, and wave breaking in nonlinear plasma waves , 2004 .

[41]  S. Kiselev,et al.  Phenomenological theory of laser-plasma interaction in ``bubble'' regime , 2004 .

[42]  A. Akhiezer,et al.  THEORY OF WAVE MOTION OF AN ELECTRON PLASMA , 1956 .

[43]  Roger J. Dejus,et al.  XOP: A graphical user interface for spectral calculations and x-ray optics utilities , 1996 .

[44]  W. A. Wenzel,et al.  Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields , 1956 .

[45]  S. Marchesini,et al.  Ultrafast single-shot diffraction imaging of nanoscale dynamics , 2008 .

[46]  D. Habs,et al.  Miniature magnetic devices for laser-based, table-top free-electron lasers , 2007 .

[47]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[48]  J. Dawson Particle simulation of plasmas , 1983 .

[49]  Eric Esarey,et al.  Overview of plasma-based accelerator concepts , 1996 .

[50]  J. Hajdu,et al.  Ultrafast Bond Softening in Bismuth: Mapping a Solid's Interatomic Potential with X-rays , 2007, Science.

[51]  P. Sprangle,et al.  Nonlinear wake‐field generation and relativistic focusing of intense laser pulses in plasmas , 1990 .

[52]  Mora,et al.  Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  Michael Geissler,et al.  Bubble acceleration of electrons with few-cycle laser pulses , 2006 .

[54]  C. Geddes,et al.  Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches , 2006 .

[55]  T Schmidt,et al.  Spatiotemporal stability of a femtosecond hard-x-ray undulator source studied by control of coherent optical phonons. , 2007, Physical review letters.

[56]  A. E. Dangor,et al.  Electron acceleration from the breaking of relativistic plasma waves , 1995, Nature.

[57]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[58]  Wurtele,et al.  Nonlinear theory of nonparaxial laser pulse propagation in plasma channels , 1999, Physical review letters.

[59]  Guenther Kettenring,et al.  Grating elements for the AXAF low-energy transmission grating spectrometer , 1992, Optics & Photonics.

[60]  A. Zholents,et al.  Proposal for intense attosecond radiation from an x-ray free-electron laser. , 2004, Physical review letters.

[61]  D. Gordon,et al.  Wakefield generation and GeV acceleration in tapered plasma channels. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Ricardo Fonseca,et al.  Exploring laser-wakefield-accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz-boosted frames , 2010 .

[63]  Tae Jun Yu,et al.  Stable generation of GeV-class electron beams from self-guided laser–plasma channels , 2008 .

[64]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[65]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[66]  H. N. Chapman,et al.  Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering , 2007, Science.

[67]  H. Kitamura,et al.  SPECTRA: a synchrotron radiation calculation code. , 2001, Journal of synchrotron radiation.

[68]  Liming Chen,et al.  0.56 GeV Laser Electron Acceleration in Ablative-Capillary-Discharge Plasma Channel , 2008 .

[69]  A Pukhov,et al.  Electron self-injection in multidimensional relativistic-plasma wake fields. , 2009, Physical review letters.

[70]  Pukhov,et al.  Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. , 1996, Physical review letters.

[71]  G. Kalintchenko,et al.  Snapshots of laser wakefields , 2006 .

[72]  Pascal Elleaume,et al.  Undulators, Wigglers and Their Applications , 2002 .

[73]  U Schramm,et al.  Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell. , 2008, Physical review letters.

[74]  K. Wille The Physics of Particle Accelerators: An Introduction , 2001 .

[75]  On the stability of laser wakefield electron accelerators in the monoenergetic regime , 2007 .

[76]  G. Shvets,et al.  Electron self-injection and trapping into an evolving plasma bubble. , 2009, Physical review letters.

[77]  V Malka,et al.  Emittance measurements of a laser-wakefield-accelerated electron beam. , 2004, Physical review letters.

[78]  Martin Dohlus,et al.  Ultraviolet and Soft X-Ray Free-Electron Lasers: Introduction to Physical Principles, Experimental Results, Technological Challenges , 2008 .

[79]  Dyson,et al.  Ultrahigh-gradient acceleration of injected eletrons by laser-excited relativistic electron plasma waves. , 1993, Physical review letters.

[80]  Zheng-Ming Sheng,et al.  Particle acceleration in relativistic laser channels , 1999 .

[81]  T. Tajima Laser acceleration and its future , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[82]  Glover,et al.  Generation of femtosecond pulses of synchrotron radiation , 2000, Science.

[83]  J. Osterhoff Stable, ultra-relativistic electron beams by laser-wakefield acceleration , 2009 .

[84]  T. Tajima High energy laser plasma accelerators , 1985 .

[85]  J. Vieira,et al.  Beam loading in the nonlinear regime of plasma-based acceleration. , 2008, Physical review letters.

[86]  E. Weckert,et al.  Review of third and next generation synchrotron light sources , 2005 .

[87]  S. V. Bulanov,et al.  Transverse-Wake Wave Breaking , 1997 .

[88]  Eric Esarey,et al.  Electron Injection into Plasma Wake Fields by Colliding Laser Pulses , 1997 .

[89]  C. Geddes,et al.  Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. , 2005, Physical review letters.

[90]  U Schramm,et al.  Absolute charge calibration of scintillating screens for relativistic electron detection. , 2010, The Review of scientific instruments.

[91]  J. Dawson Plasma particle accelerators , 1989 .

[92]  J. Cary,et al.  Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. , 2008, Physical review letters.

[93]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[94]  P. Michel,et al.  Radiative damping and electron beam dynamics in plasma-based accelerators. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  P. Norreys,et al.  Ultrashort pulse filamentation and monoenergetic electron beam production in LWFAs , 2009 .

[96]  H. Wiedemann Particle accelerator physics , 1993 .

[97]  S. V. Bulanov,et al.  Particle injection into the wave acceleration phase due to nonlinear wake wave breaking , 1998 .

[98]  Alexander Pukhov,et al.  Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons , 2004 .

[99]  G. Malka,et al.  Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse , 2002, Science.

[100]  P. Elleaume,et al.  Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera. , 1995, Journal of synchrotron radiation.

[101]  P. Norreys,et al.  Laser-driven acceleration of electrons in a partially ionized plasma channel. , 2008, Physical review letters.

[102]  P. Norreys,et al.  Monoenergetic electronic beam production using dual collinear laser pulses. , 2008, Physical review letters.

[103]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[104]  Eric Esarey,et al.  Trapping and acceleration in nonlinear plasma waves , 1995 .

[105]  J. Clarke,et al.  The Science and Technology of Undulators and Wigglers , 2004 .

[106]  Eric Esarey,et al.  Design considerations for a laser-plasma linear collider , 2009 .

[107]  W. Thomlinson,et al.  Characteristics of synchrotron radiation , 1984 .

[108]  Sebastian M. Pfotenhauer,et al.  A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation , 2009 .