Locally parametric nonparametric density estimation

This paper develops a nonparametric density estimator with parametric overtones. Suppose f(x, θ) is some family of densities, indexed by a vector of parameters θ. We define a local kernel-smoothed likelihood function which, for each x, can be used to estimate the best local parametric approximant to the true density. This leads to a new density estimator of the form f(x, o(x)), thus inserting the best local parameter estimate for each new value of x. When the bandwidth used is large, this amounts to ordinary full likelihood parametric density estimation, while for moderate and small bandwidths the method is essentially nonparametric, using only local properties of data and the model. Alternative ways more general than via the local likelihood are also described. The methods can be seen as ways of nonparametrically smoothing the parameter within a parametric class. Properties of this new semiparametric estimator are investigated. Our preferred version has approximately the same variance as the ordinary kernel method but potentially a smaller bias. The new method is seen to perform better than the traditional kernel method in a broad nonparametric vicinity of the parametric model employed, while at the same time being capable of not losing much in precision to full likelihood methods when the model is correct. Other versions of the method are approximately equivalent to using particular higher order kernels in a semiparametric framework. The methodology we develop can be seen as the density estimation parallel to local likelihood and local weighted least squares theory in nonparametric regression.

[1]  J. K. Lindsey,et al.  Comparison of Probability Distributions , 1974 .

[2]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[3]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[4]  S. Yakowitz,et al.  PARAMETRIC/NONPARAMETRIC MIXTURE DENSITY ESTIMATION WITH APPLICATION TO FLOOD‐FREQUENCY ANALYSIS1 , 1985 .

[5]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[6]  Ingram Olkin,et al.  A Semiparametric Approach to Density Estimation , 1987 .

[7]  J. Staniswalis The Kernel Estimate of a Regression Function in Likelihood-Based Models , 1989 .

[8]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[9]  M. West,et al.  Semiparametric estimation of parametric hazard rates , 1992 .

[10]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[11]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[12]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[13]  S. Buckland Maximum Likelihood Fitting of Hermite and Simple Polynomial Densities , 1992 .

[14]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[15]  Nils Lid Hjort,et al.  Dynamic Likelihood Hazard Rate Estimation , 1993 .

[16]  D. Pollard,et al.  Asymptotics for minimisers of convex processes , 2011, 1107.3806.

[17]  M. C. Jones,et al.  Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation , 1993 .

[18]  M. C. Jones,et al.  Generalized jackknifing and higher order kernels , 1993 .

[19]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[20]  M. C. Jones,et al.  Simple boundary correction for kernel density estimation , 1993 .

[21]  K. Doksum,et al.  Correlation Curves: Measures of Association as Functions of Covariate Values , 1993 .

[22]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[23]  M. C. Jones Kernel density estimation when the bandwidth is large , 1993 .

[24]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[25]  M. C. Jones On kernel density derivative estimation , 1994 .

[26]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[27]  Nils Lid Hjort,et al.  Bayesian Approaches to Non- and Semiparametric Density Estimation , 1994 .

[28]  M. C. Jones,et al.  Versions of Kernel-Type Regression Estimators , 1994 .

[29]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[30]  N. Hjort,et al.  Nonparametric Density Estimation with a Parametric Start , 1995 .

[31]  J. B. Copas,et al.  Local Likelihood Based on Kernel Censoring , 1995 .

[32]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[33]  M. C. Jones On close relations of local likelihood density estimation , 1996 .

[34]  C. Loader Local Likelihood Density Estimation , 1996 .

[35]  J. Marron,et al.  Progress in data-based bandwidth selection for kernel density estimation , 1996 .

[36]  Performance of Efron and Tibshirani's semiparametric density estimator , 1996 .

[37]  R. Tibshirani,et al.  Using specially designed exponential families for density estimation , 1996 .