Optimality of SVM: Novel proofs and tighter bounds
暂无分享,去创建一个
[1] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[2] David Haussler,et al. Predicting {0,1}-functions on randomly drawn points , 1988, COLT '88.
[3] HausslerDavid,et al. A general lower bound on the number of examples needed for learning , 1989 .
[4] Lee-Ad Gottlieb,et al. Learning convex polytopes with margin , 2018, NeurIPS.
[5] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[6] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[7] Nick Littlestone,et al. From on-line to batch learning , 1989, COLT '89.
[8] Ralf Herbrich,et al. Learning Kernel Classifiers: Theory and Algorithms , 2001 .
[9] Ameet Talwalkar,et al. Foundations of Machine Learning , 2012, Adaptive computation and machine learning.
[10] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[11] Anthony Widjaja,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.
[12] Tong Zhang,et al. Covering Number Bounds of Certain Regularized Linear Function Classes , 2002, J. Mach. Learn. Res..
[13] V. Vapnik,et al. Bounds on Error Expectation for Support Vector Machines , 2000, Neural Computation.
[14] Albert B Novikoff,et al. ON CONVERGENCE PROOFS FOR PERCEPTRONS , 1963 .
[15] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[16] John Shawe-Taylor,et al. Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.
[17] Leslie G. Valiant,et al. A general lower bound on the number of examples needed for learning , 1988, COLT '88.
[18] Tong Zhang,et al. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods , 2001, AI Mag..
[19] Tsuyoshi Murata,et al. {m , 1934, ACML.