Fabrication of Highly Ordered InSb Nanowire Arrays by Electrodeposition in Porous Anodic Alumina Membranes

Highly ordered near-stoichiometrical polycrystalline InSb nanowire arrays have been fabricated by direct current (dc) electrodeposition inside the nanochannels of anodic alumina membranes (AAMs) and subsequent annealing. X-ray diffraction patterns and X-ray energy dispersion analysis reveal the change of crystal structure and the ratio of indium to antimony due to the deposition potential. The results show that cubic-phase InSb nanowire arrays can be achieved by using certain deposition potential and subsequent annealing. Transmission electron microscopy and scanning electron microscopy results demonstrate that these InSb nanowires are uniform with diameters about 50 nm, corresponding to the pore diameter of the AAMs. Raman spectrum further demonstrates the InSb nanowire with high crystal quality.

[1]  Jaw-Shen Tsai,et al.  Nonmagnetic semiconductors as read-head sensors for ultra-high-density magnetic recording , 2002 .

[2]  T. Wade,et al.  Electrochemical formation of a III–V compound semiconductor superlattice: InAs/InSb , 2001 .

[3]  I. Sun,et al.  Electrodeposition of Indium Antimonide from the Water-Stable 1-Ethyl-3-methylimidazolium Chloride/Tetrafluoroborate Ionic Liquid , 2003 .

[4]  Iraklis Ntakis,et al.  Optimization of transmission properties of two-dimensional photonic crystal channel waveguide bends through local lattice deformation , 2004 .

[5]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[6]  S. Mohney,et al.  Condensed phase equilibria in transition metal-Ga-Sb systems and predictions for thermally stable contacts to GaSb , 2003 .

[7]  L. Bicelli,et al.  Influence of the structure of the electrodeposited antimony substrate on indium diffusion , 1999 .

[8]  G. Meng,et al.  Synthesis of highly ordered CdSe nanowire arrays embedded in anodic alumina membrane by electrodeposition in ammonia alkaline solution , 2001 .

[9]  T. Sun,et al.  High temperature InAs infrared detector based on metal-insulator-semiconductor structure , 1995 .

[10]  Dietrich R. T. Zahn,et al.  Raman monitoring of semiconductor growth , 1994 .

[11]  B. Bozzini,et al.  Preparation of InAs by annealing of two-layer In-As electrodeposits , 2004 .

[12]  J. Angus,et al.  Electrodeposition of polycrystalline InSb from aqueous electrolytes , 2004 .

[13]  N. Pesika,et al.  Relationship between Absorbance Spectra and Particle Size Distributions for Quantum-Sized Nanocrystals , 2003 .

[14]  Hines,et al.  Enhanced Room-Temperature Geometric Magnetoresistance in Inhomogeneous Narrow-Gap Semiconductors. , 2000, Science.

[15]  G. D. L. Cruz The influence of surface segregation on the optical properties of quantum wells , 2004 .

[16]  S. Zaitsev-Zotov,et al.  Unconventional magnetoresistance in long InSb nanowires , 2002, cond-mat/0212633.

[17]  C. T. Elliott,et al.  Uncooled high‐speed InSb field‐effect transistors , 1995 .

[18]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[19]  Y. Fujiwara,et al.  Fabrication of InAs quantum dots by droplet heteroepitaxy on periodic arrays of InP nanopyramids , 2004 .