Complex N-glycans: the story of the “yellow brick road”

[1]  Gerald W. Hart,et al.  Handbook of Glycosyltransferases and Related Genes , 2014, Springer Japan.

[2]  J. Dennis,et al.  Metabolism, Cell Surface Organization, and Disease , 2009, Cell.

[3]  J. Dennis,et al.  Adaptive Regulation at the Cell Surface by N‐Glycosylation , 2009, Traffic.

[4]  Naoyuki Taniguchi,et al.  Functional roles of N‐glycans in cell signaling and cell adhesion in cancer , 2008, Cancer science.

[5]  V. Reinhold,et al.  Null Mutations in Drosophila N-Acetylglucosaminyltransferase I Produce Defects in Locomotion and a Reduced Life Span* , 2006, Journal of Biological Chemistry.

[6]  H. Schachter,et al.  N-glycans are involved in the response of Caenorhabditis elegans to bacterial pathogens. , 2006, Methods in enzymology.

[7]  S. Kornfeld The Synthesis of Complex-type Oligosaccharides , 2002 .

[8]  P. Stanley N -Acetylglucosaminyltransferase-I , 2002 .

[9]  J. Marth,et al.  Complex asparagine‐linked oligosaccharides are required for morphogenic events during post‐implantation development. , 1994, The EMBO journal.

[10]  P. Stanley,et al.  Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Schachter,et al.  The 'yellow brick road' to branched complex N-glycans. , 1991, Glycobiology.

[12]  I. Brockhausen,et al.  Control of glycoprotein synthesis. Detection and characterization of a novel branching enzyme from hen oviduct, UDP-N-acetylglucosamine:GlcNAc beta 1-6 (GlcNAc beta 1-2)Man alpha-R (GlcNAc to Man) beta-4-N-acetylglucosaminyltransferase VI. , 1989, The Journal of biological chemistry.

[13]  I. Brockhausen,et al.  Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. , 1988, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[14]  H. Schachter,et al.  Control of glycoprotein synthesis. Purification and characterization of rabbit liver UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I. , 1988, The Journal of biological chemistry.

[15]  H. Schachter,et al.  Control of glycoprotein synthesis. Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. , 1987, The Journal of biological chemistry.

[16]  H. Schachter,et al.  Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. , 1987, The Journal of biological chemistry.

[17]  H. Schachter,et al.  Control of glycoprotein synthesis. IX. A terminal Man alpha l-3Man beta 1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: alpha-D-mannoside (GlcNAc to Man alpha 1-3) beta 2-N-acetylglucosaminyltransferase I. , 1984, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.

[18]  P. Gleeson,et al.  Control of glycoprotein synthesis. , 1983, The Journal of biological chemistry.

[19]  S. Narasimhan Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in beta 1-4 linkage to the beta-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. , 1982, The Journal of biological chemistry.

[20]  N. Harpaz,et al.  Control of glycoprotein synthesis. The purification by preparative high voltage paper electrophoresis in borate of glycopeptides containing high mannose and complex oligosaccharide chains linked to asparagine. , 1980, The Journal of biological chemistry.

[21]  N. Harpaz,et al.  Control of glycoprotein synthesis. Bovine colostrum UDP-N-acetylglucosamine:alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase I. Separation from UDP-N-acetylglucosamine:alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase II, partial purification, and substrate specificity. , 1980, The Journal of biological chemistry.

[22]  N. Harpaz,et al.  Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi alpha-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase I. , 1980, The Journal of biological chemistry.

[23]  S. Kornfeld,et al.  The synthesis of complex-type oligosaccharides. III. Identification of an alpha-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. , 1978, The Journal of biological chemistry.

[24]  S. Kornfeld,et al.  The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. , 1978, The Journal of biological chemistry.

[25]  P. Stanley,et al.  Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistant CHO cells , 1978, Cell.

[26]  S. Kornfeld,et al.  Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. , 1978, The Journal of biological chemistry.

[27]  P. Stanley,et al.  Control of glycoprotein synthesis. Lectin-resistant mutant containing only one of two distinct N-acetylglucosaminyltransferase activities present in wild type Chinese hamster ovary cells. , 1977, The Journal of biological chemistry.

[28]  L. Culp,et al.  Contact-Inhibited Revertant Cell Lines Isolated from Simian Virus 40-Transformed Cells. VII. Serum Detachment-Resistant Revertant Cells , 1977, Journal of Virology.

[29]  R. Nairn,et al.  Ricin resistance in baby hamster kidney cells , 1975, Nature.

[30]  P. Stanley,et al.  Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine--glycoprotein N-acetylglucosaminyltransferase activity. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Muramatsu,et al.  Asparagine-linked oligosaccharide chains of IgG: a revised structure. , 1975, Biochemical and biophysical research communications.

[32]  S. Kornfeld,et al.  Deficient uridine diphosphate-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins. , 1975, The Journal of biological chemistry.

[33]  P. Stanley,et al.  Altered cell surface glycoproteins in phytohemagglutinin-resistant mutants of Chinese hamster ovary cells. , 1975, Biochimica et biophysica acta.

[34]  T. Muramatsu,et al.  Release of galactosyl oligosaccharides by endo-β-N-acetylglucosaminidase D , 1975 .

[35]  J. Montreuil Recent data on the structure of the carbohydrate moiety of glycoproteins. Metabolic and biological implications , 1975 .

[36]  T. Muramatsu,et al.  Release of galactosyl oligosaccharides by endo-beta-N-acetylglucosaminidase D. , 1975, Biochemical and Biophysical Research Communications - BBRC.

[37]  P. Stanley,et al.  Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin , 1975, Somatic cell genetics.

[38]  S. Kornfeld,et al.  Isolation of a clone of Chinese hamster ovary cells deficient in plant lectin-binding sites. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Nicolson,et al.  Derivation of lymphoma variants with reduced sensitivity to plant lectins. , 1974, Journal of the National Cancer Institute.

[40]  G. Nicolson,et al.  The interactions of lectins with animal cell surfaces. , 1974, International review of cytology.

[41]  A. Zachowski,et al.  Correlation between the mobility of inner plasma membrane structure and agglutination by concanavalin A in two cell lines of MOPC 173 plasmocytoma cells. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. G. Miller The Biology of Oncogenic Viruses , 1973, The Yale Journal of Biology and Medicine.

[43]  J. Wright EVIDENCE FOR PLEIOTROPIC CHANGES IN LINES OF CHINESE HAMSTER OVARY CELLS RESISTANT TO CONCANAVALIN A AND PHYTOHEMAGGLUTININ-P , 1973, The Journal of cell biology.

[44]  N. Sharon,et al.  The biochemistry of plant lectins (phytohemagglutinins). , 1973, Annual review of biochemistry.

[45]  M. Fukuda,et al.  Chemical nature of the receptor site for various phytomitogens. , 1972, Biochemistry.

[46]  L. Culp,et al.  Contact-Inhibited Revertant Cell Lines Isolated from Simian Virus 40-Transformed Cells III. Concanavalin A-Selected Revertant Cells , 1972, Journal of virology.

[47]  I. Hiscock Modern Methods in the History of Medicine , 1972, The Yale Journal of Biology and Medicine.

[48]  S. Kornfeld,et al.  The structure of a phytohemagglutinin receptor site from human erythrocytes. , 1970, The Journal of biological chemistry.

[49]  Hughes Rc,et al.  Sequential periodate oxidation of the slpha-acid glycoprotein of human plasma. , 1966 .

[50]  R. Hughes,et al.  Sequential periodate oxidation of the slpha-acid glycoprotein of human plasma. , 1966, Biochemistry.

[51]  R. Spiro PERIODATE OXIDATION OF THE GLYCOPROTEIN FETUIN. , 1964, The Journal of biological chemistry.