Full Metastable Asymptotic of the Fisher Information

We establish an expansion by Gamma-convergence of the Fisher information relative to the reference measure exp(-beta V), where V is a generic multiwell potential and beta goes to infinity. The expansion reveals a hierarchy of multiple scales reflecting the metastable behavior of the underlying overdamped Langevin dynamics: distinct scales emerge and become relevant depending on whether one considers probability measures concentrated on local minima of V, probability measures concentrated on critical points of V, or generic probability measures on R^d. We thus fully describe the asymptotic behavior of minima of the Fisher information over regular sets of probabilities. The analysis mostly relies on spectral properties of diffusion operators and the related semiclassical Witten Laplacian and covers also the case of a compact smooth manifold as underlying space.

[1]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[2]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[3]  C. Villani Optimal Transport: Old and New , 2008 .

[4]  Andrea Braides Γ-convergence for beginners , 2002 .

[5]  Tony Lelievre,et al.  Two mathematical tools to analyze metastable stochastic processes , 2012, 1201.3775.

[6]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[7]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[8]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[9]  A. Bovier,et al.  Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .

[10]  E. Witten Supersymmetry and Morse theory , 1982 .

[11]  G. Menz,et al.  Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape , 2012, 1202.1510.

[12]  D. L. Peutrec Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian , 2010 .

[13]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[14]  Yuri Kifer,et al.  Large deviations in dynamical systems and stochastic processes , 1990 .

[15]  M. Mariani A Gamma-convergence approach to large deviations , 2012, 1204.0640.

[16]  Tony Lelièvre,et al.  Jump Markov models and transition state theory: the quasi-stationary distribution approach. , 2016, Faraday discussions.

[17]  Michael Eckhoff Precise asymptotics of small eigenvalues of reversible diffusions in the metastable regime , 2005 .

[18]  F. Nier Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. , 2004 .

[19]  N. Berglund Kramers' law: Validity, derivations and generalisations , 2011, 1106.5799.

[20]  E. Olivieri,et al.  Large deviations and metastability , 2005 .

[21]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[22]  D. Stroock,et al.  Probability Theory: An Analytic View. , 1995 .

[23]  D. Stroock,et al.  Probability Theory: An Analytic View , 1995, The Mathematical Gazette.

[24]  George H. Duffey Reaction Rate Theory , 2000 .

[25]  Mark A. Peletier,et al.  From Diffusion to Reaction via Γ-Convergence , 2010, SIAM J. Math. Anal..

[26]  M. Mariani A Γ-convergence approach to large deviations , 2018 .