Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)

Abstract. Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin–Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.

[1]  Andrew E. Suyker,et al.  Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems , 2005 .

[2]  T. W. Horst,et al.  The Canopy Horizontal Array Turbulence Study , 2011 .

[3]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[4]  R. Leuning,et al.  A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I:: Model description and comparison with a multi-layered model , 1998 .

[5]  Ülo Niinemets,et al.  Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants , 1999 .

[6]  J. Wallace,et al.  Evaporation from sparse crops‐an energy combination theory , 2007 .

[7]  R. Dickinson,et al.  Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)] , 1993 .

[8]  T. Meyers,et al.  An assessment of storage terms in the surface energy balance of maize and soybean , 2004 .

[9]  C. Kucharik,et al.  Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data , 2007 .

[10]  Carl J. Bernacchi,et al.  Carbon budget of mature no-till ecosystem in North Central Region of the United States , 2005 .

[11]  K. G. McNaughton,et al.  A ‘Lagrangian’ revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy , 1995 .

[12]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[13]  Youngryel Ryu,et al.  Interannual variability of evapotranspiration and energy exchange over an annual grassland in California , 2008 .

[14]  J. F. Clarke,et al.  A multilayer model for inferring dry deposition using standard meteorological measurements , 1998 .

[15]  S. T. Gower,et al.  Measurements of branch area and adjusting leaf area index indirect measurements , 1998 .

[16]  Ray Leuning,et al.  The Turbulent Lagrangian Time Scale in Forest Canopies Constrained by Fluxes, Concentrations and Source Distributions , 2009 .

[17]  W. Massman,et al.  An Analytical one-Dimensional Second-Order Closure Model of Turbulence Statistics and the Lagrangian Time Scale Within and Above Plant Canopies of Arbitrary Structure , 1999 .

[18]  T. Foken 50 Years of the Monin–Obukhov Similarity Theory , 2006 .

[19]  K. G. McNaughton,et al.  Stomatal Control of Transpiration: Scaling Up from Leaf to Region , 1986 .

[20]  J. Thornton,et al.  The Chemistry of Atmosphere-Forest Exchange (CAFE) Model – Part 1: Model description and characterization , 2010 .

[21]  K. M. Jensen Rudolf Geiger: Das Klima der bodennahen Luftschicht. Ein Lehrbuch der Mikroklimatologie. Friedr. Yieweg und Sohn, Braunschweig 1961.16x21 cm, 646 sider, pris 54 DM. , 1961 .

[22]  I. Harman The Role of Roughness Sublayer Dynamics Within Surface Exchange Schemes , 2011, Boundary-Layer Meteorology.

[23]  B. Bonan,et al.  A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide , 1996 .

[24]  E. Inoue,et al.  On the Turbulent Structure of Airflow within , 1963 .

[25]  G. Katul,et al.  Modelling sources and sinks of CO2, H2O and heat within a Siberian pine forest using three inverse methods , 2003 .

[26]  David G. Tarboton,et al.  Testing above‐ and below‐canopy representations of turbulent fluxes in an energy balance snowmelt model , 2013 .

[27]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[28]  Robert E. Dickinson,et al.  A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance , 2004 .

[29]  John L. Monteith,et al.  A four-layer model for the heat budget of homogeneous land surfaces , 1988 .

[30]  R. Cionco Analysis of canopy index values for various canopy densities , 1978 .

[31]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[32]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[33]  J. Finnigan,et al.  Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy , 1996 .

[34]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[35]  J. Garratt Flux profile relations above tall vegetation , 1978 .

[36]  M. Torn,et al.  Representing winter wheat in the Community Land Model (version 4.5) , 2017 .

[37]  Andrei Serafimovich,et al.  Vertical structure of evapotranspiration at a forest site (a case study) , 2011 .

[38]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model , 1986 .

[39]  Atul K. Jain,et al.  A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis , 2012 .

[40]  J. M. Norman,et al.  Photosynthesis in Sitka Spruce (Picea sitchensis (Bong.) Carr.). III. Measurements of Canopy Structure and Interception of Radiation , 1974 .

[41]  Jehn-Yih Juang,et al.  Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US , 2006 .

[42]  J. Finnigan,et al.  A simple unified theory for flow in the canopy and roughness sublayer , 2007 .

[43]  R. Shaw,et al.  Aerodynamic roughness of a plant canopy: A numerical experiment , 1982 .

[44]  Zong-Liang Yang,et al.  Effects of vegetation canopy processes on snow surface energy and mass balances , 2004 .

[45]  R. Dickinson,et al.  Treatment of Undercanopy Turbulence in Land Models , 2005 .

[46]  Michael R. Raupach,et al.  Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index , 1994 .

[47]  J. Finnigan,et al.  Scalar Concentration Profiles in the Canopy and Roughness Sublayer , 2008 .

[48]  Roger H. Shaw,et al.  Turbulence structure above a vegetation canopy , 2009, Journal of Fluid Mechanics.

[49]  Brett R. Scheffers,et al.  Increasing arboreality with altitude: a novel biogeographic dimension , 2013, Proceedings of the Royal Society B: Biological Sciences.

[50]  I. R. Cowan,et al.  Transfer processes in plant canopies in relation to stomatal characteristics. , 1987 .

[51]  R. Oren,et al.  Carbon dioxide and water vapor exchange in a warm temperate grassland , 2003, Oecologia.

[52]  I. R. Cowan,et al.  Maintenance of Leaf Temperature and the Optimisation of Carbon Gain in Relation to Water Loss in a Tropical Mangrove Forest , 1988 .

[53]  Kyaw Tha Pawu,et al.  The UCD Advanced Canopy‐Atmosphere‐Soil Algorithm: Comparisons with observations from different climate and vegetation regimes , 2000 .

[54]  K. Davis,et al.  A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes , 2006 .

[55]  A. J. Dolman,et al.  A multiple-source land surface energy balance model for use in general circulation models , 1993 .

[56]  R. Forkel,et al.  FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere-atmosphere chemical exchange , 2015 .

[57]  A. Moene,et al.  Influence of Canopy Seasonal Changes on Turbulence Parameterization within the Roughness Sublayer over an Orchard Canopy , 2016 .

[58]  Peter D. Blanken,et al.  Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components , 1997 .

[59]  Ronald M. Cionco,et al.  A Mathematical Model for Air Flow in a Vegetative Canopy , 1965 .

[60]  Alessandro Cescatti,et al.  Biophysical climate impacts of recent changes in global forest cover , 2016, Science.

[61]  C. Ottlé,et al.  A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations , 2014 .

[62]  Zong-Liang Yang,et al.  Technical description of version 4.5 of the Community Land Model (CLM) , 2013 .

[63]  Wilfried Brutsaert,et al.  Evaporation into the atmosphere : theory, history, and applications , 1982 .

[64]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[65]  J. Garratt,et al.  Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain , 1995 .

[66]  K. Oleson,et al.  Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum , 2014 .

[67]  Dmitri Kavetski,et al.  A unified approach for process‐based hydrologic modeling: 2. Model implementation and case studies , 2015 .

[68]  G. Katul,et al.  Investigating a Hierarchy of Eulerian Closure Models for Scalar Transfer Inside Forested Canopies , 2008 .

[69]  D. Coomes,et al.  Microclimate moderates plant responses to macroclimate warming , 2013, Proceedings of the National Academy of Sciences.

[70]  W. Massman,et al.  AN ANALYTICAL ONE-DIMENSIONAL MODEL OF MOMENTUM TRANSFER BY VEGETATION OF ARBITRARY STRUCTURE , 1997 .

[71]  Michael R. Raupach,et al.  A practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopies , 1989 .

[72]  Scott V. Ollinger,et al.  The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States , 2018 .

[73]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[74]  J. Crank Difference Methods for Initial-Value Problems 2nd edn , 1968 .

[75]  Jonathan E. Pleim,et al.  A multilayer biochemical dry deposition model. 1. Model formulation , 2003 .

[76]  Rainer Steinbrecher,et al.  Trace gas exchange and gas phase chemistry in a Norway spruce forest : A study with a coupled 1-dimensional canopy atmospheric chemistry emission model , 2006 .

[77]  C. Ottlé,et al.  Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme , 2016 .

[78]  G. Bonan,et al.  Stomatal Function across Temporal and Spatial Scales: Deep-Time Trends, Land-Atmosphere Coupling and Global Models1[OPEN] , 2017, Plant Physiology.

[79]  S. Wofsy,et al.  Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest : the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties , 1996 .

[80]  Paul A. Makar,et al.  Role of canopy‐scale photochemistry in modifying biogenic‐atmosphere exchange of reactive terpene species: Results from the CELTIC field study , 2005 .

[81]  Peter E. Thornton,et al.  Interactive Crop Management in the Community Earth System Model (CESM1): Seasonal Influences on Land–Atmosphere Fluxes , 2012 .