Multi-Modal CTL: Completeness, Complexity, and an Application

We define a multi-modal version of Computation Tree Logic (ctl) by extending the language with path quantifiers Eδ and Aδ where δ denotes one of finitely many dimensions, interpreted over Kripke structures with one total relation for each dimension. As expected, the logic is axiomatised by taking a copy of a ctl axiomatisation for each dimension. Completeness is proved by employing the completeness result for ctl to obtain a model along each dimension in turn. We also show that the logic is decidable and that its satisfiability problem is no harder than the corresponding problem for ctl. We then demonstrate how Normative Systems can be conceived as a natural interpretation of such a multi-dimensional ctl logic.

[1]  Stephan Merz,et al.  Model Checking , 2000 .

[2]  Alexander Artikis,et al.  Specifying norm-governed computational societies , 2009, TOCL.

[3]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[4]  Marcelo Finger,et al.  The Unrestricted Combination of Temporal Logic Systems , 2002, Log. J. IGPL.

[5]  Henry Prakken,et al.  Contrary-to-duty obligations , 1996, Stud Logica.

[6]  Michael Wooldridge,et al.  Social laws in alternating time: effectiveness, feasibility, and synthesis , 2006, Synthese.

[7]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[8]  Michael Wooldridge,et al.  On obligations and normative ability: Towards a logical analysis of the social contract , 2005, J. Appl. Log..

[9]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[10]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[11]  Frank Dignum,et al.  Meeting the Deadline: Why, When and How , 2004, FAABS.

[12]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[13]  Georg Gottlob,et al.  Monadic queries over tree-structured data , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[14]  Marcus Kracht,et al.  Simulation and Transfer Results in Modal Logic – A Survey , 1997, Stud Logica.

[15]  Marek J. Sergot,et al.  The Deontic Component of Action Language nC+ , 2006, DEON.

[16]  Dov M. Gabbay,et al.  Adding a temporal dimension to a logic system , 1992, J. Log. Lang. Inf..

[17]  Michael Wooldridge,et al.  Completeness and Complexity of Multi-modal CTL , 2009, M4M.

[18]  Alessio Lomuscio,et al.  Deontic Interpreted Systems , 2003, Stud Logica.

[19]  Michael Wooldridge,et al.  A Temporal Logic of Normative Systems , 2009, Towards Mathematical Philosophy.

[20]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[21]  Michael Wooldridge,et al.  On the Logic of Normative Systems , 2007, IJCAI.

[22]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[23]  Adam Naumowicz,et al.  An example of formalizing recent mathematical results in Mizar , 2006, J. Appl. Log..

[24]  Marcelo Finger,et al.  How Not to Combine Modal Logics , 2005, IICAI.

[25]  Moshe Tennenholtz,et al.  On Social Laws for Artificial Agent Societies: Off-Line Design , 1995, Artif. Intell..

[26]  Roel Wieringa,et al.  Deontic logic in computer science: normative system specification , 1994 .