Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations.

Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.

[1]  Xiaoshu Jing,et al.  A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies , 2020, Medicinal research reviews.

[2]  M. Parrinello,et al.  Data-Driven Collective Variables for Enhanced Sampling. , 2020, The journal of physical chemistry letters.

[3]  Vasanthanathan Poongavanam,et al.  Solution conformations explain the chameleonic behaviour of macrocyclic drugs. , 2020, Chemistry.

[4]  U. Strähle,et al.  Light-controllable dithienylethene-modified cyclic peptides: photoswitching the in vivo toxicity in zebrafish embryos , 2020, Beilstein journal of organic chemistry.

[5]  F. Stillinger,et al.  Computational investigation of retro‐isomer equilibrium structures: Intrinsically disordered, foldable, and cyclic peptides , 2020, FEBS letters.

[6]  Xiaolin Cheng,et al.  Generation of the configurational ensemble of an intrinsically disordered protein from unbiased molecular dynamics simulation , 2019, Proceedings of the National Academy of Sciences.

[7]  O. Vázquez,et al.  Photoswitchable peptides for spatiotemporal control of biological functions. , 2019, Chemical communications.

[8]  D. Fairlie,et al.  Crystal Structures of Protein-Bound Cyclic Peptides. , 2019, Chemical reviews.

[9]  Satoshi Ono,et al.  Conformation and Permeability: Cyclic Hexapeptide Diastereomers , 2019, J. Chem. Inf. Model..

[10]  Dalibor Trapl,et al.  Anncolvar: Approximation of Complex Collective Variables by Artificial Neural Networks for Analysis and Biasing of Molecular Simulations , 2019, Front. Mol. Biosci..

[11]  Joshua A. Kritzer,et al.  β-Branched Amino Acids Stabilize Specific Conformations of Cyclic Hexapeptides. , 2019, Biophysical journal.

[12]  Shantenu Jha,et al.  CoCo-MD: A Simple and Effective Method for the Enhanced Sampling of Conformational Space. , 2019, Journal of chemical theory and computation.

[13]  Galo Canizares A History , 2018, Thresholds.

[14]  Shuzhe Wang,et al.  Rationalization of the Membrane Permeability Differences in a Series of Analogue Cyclic Decapeptides , 2018, J. Chem. Inf. Model..

[15]  A. Abell,et al.  Photopharmacological Control of Cyclic Antimicrobial Peptides , 2018, Chembiochem : a European journal of chemical biology.

[16]  W. M. Hewitt,et al.  Lipophilic Permeability Efficiency Reconciles the Opposing Roles of Lipophilicity in Membrane Permeability and Aqueous Solubility. , 2018, Journal of medicinal chemistry.

[17]  Stanislaw Wlodek,et al.  Conformational Sampling of Macrocyclic Drugs in Different Environments: Can We Find the Relevant Conformations? , 2018, ACS omega.

[18]  M. A. Abdalla,et al.  Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review , 2018, Molecules.

[19]  Chris Morrison Constrained peptides' time to shine? , 2018, Nature Reviews Drug Discovery.

[20]  Yftah Tal‐Gan,et al.  Cyclic Peptides that Govern Signal Transduction Pathways: From Prokaryotes to Multi-Cellular Organisms. , 2018, Current topics in medicinal chemistry.

[21]  M. Parker,et al.  Cyclic Hexapeptide Mimics of the LEDGF Integrase Recognition Loop in Complex with HIV‐1 Integrase , 2018, ChemMedChem.

[22]  A. Corti,et al.  Succinimide-Based Conjugates Improve IsoDGR Cyclopeptide Affinity to αvβ3 without Promoting Integrin Allosteric Activation. , 2018, Journal of medicinal chemistry.

[23]  Juan Cortés,et al.  Exhaustive exploration of the conformational landscape of small cyclic peptides using a robotics approach , 2018, bioRxiv.

[24]  R. Lokey,et al.  Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach. , 2018, Physical chemistry chemical physics : PCCP.

[25]  Paul Robustelli,et al.  Developing a molecular dynamics force field for both folded and disordered protein states , 2018, Proceedings of the National Academy of Sciences.

[26]  Klaus R Liedl,et al.  Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization , 2018, J. Chem. Inf. Model..

[27]  Vasanthanathan Poongavanam,et al.  Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs Beyond the Rule of 5. , 2018, Journal of medicinal chemistry.

[28]  Joshua A. Kritzer,et al.  Designing Well-Structured Cyclic Pentapeptides Based on Sequence-Structure Relationships. , 2018, The journal of physical chemistry. B.

[29]  Yu-Shan Lin,et al.  Understanding and designing head‐to‐tail cyclic peptides , 2018, Biopolymers.

[30]  David Baker,et al.  Comprehensive computational design of ordered peptide macrocycles , 2017, Science.

[31]  B. Keller,et al.  Interconversion Rates between Conformational States as Rationale for the Membrane Permeability of Cyclosporines. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[33]  R. Glen,et al.  Pharmacological targeting of apelin impairs glioblastoma growth , 2017, Brain : a journal of neurology.

[34]  Horst Kessler,et al.  Improving oral bioavailability of cyclic peptides by N-methylation. , 2017, Bioorganic & medicinal chemistry.

[35]  C. Heinis,et al.  Cyclic peptide therapeutics: past, present and future. , 2017, Current opinion in chemical biology.

[36]  Haruki Nakamura,et al.  Accurate Prediction of Complex Structure and Affinity for a Flexible Protein Receptor and Its Inhibitor. , 2017, Journal of chemical theory and computation.

[37]  Vijay S Pande,et al.  tICA-Metadynamics: Accelerating Metadynamics by Using Kinetically Selected Collective Variables. , 2017, Journal of chemical theory and computation.

[38]  Hongtao Yu,et al.  Toward accurately modeling N-methylated cyclic peptides. , 2017, Physical chemistry chemical physics : PCCP.

[39]  Valerie Daggett,et al.  Insights from molecular dynamics simulations for computational protein design. , 2017, Molecular systems design & engineering.

[40]  Hongtao Yu,et al.  Mapping the sequence-structure relationships of simple cyclic hexapeptides. , 2017, Physical chemistry chemical physics : PCCP.

[41]  Timothy Clark,et al.  Conformation and Dynamics of Human Urotensin II and Urotensin Related Peptide in Aqueous Solution , 2017, J. Chem. Inf. Model..

[42]  Haruki Nakamura,et al.  Revisiting antibody modeling assessment for CDR-H3 loop , 2016, Protein engineering, design & selection : PEDS.

[43]  Anna L. Duncan,et al.  Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale , 2016, Current opinion in structural biology.

[44]  David Baker,et al.  Accurate de novo design of hyperstable constrained peptides , 2016, Nature.

[45]  Timothy Clark,et al.  Can Simulations and Modeling Decipher NMR Data for Conformational Equilibria? Arginine-Vasopressin , 2016, J. Chem. Inf. Model..

[46]  D. Bevan,et al.  Molecular Dynamics Simulations of Amyloid β-Peptide (1-42): Tetramer Formation and Membrane Interactions. , 2016, Biophysical journal.

[47]  Matthew P Jacobson,et al.  Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics. , 2016, Journal of chemical theory and computation.

[48]  Marie-Claude Blatter,et al.  Kinetic Models of Cyclosporin A in Polar and Apolar Environments Reveal Multiple Congruent Conformational States , 2016, J. Chem. Inf. Model..

[49]  Y. Sugita,et al.  Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. , 2016, Biochimica et biophysica acta.

[50]  F. Jiang,et al.  Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields. , 2016, The journal of physical chemistry letters.

[51]  S. Vajda,et al.  Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. , 2016, Drug discovery today.

[52]  Pierre Tufféry,et al.  PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex , 2016, Nucleic Acids Res..

[53]  Hongtao Yu,et al.  Insights into How Cyclic Peptides Switch Conformations. , 2016, Journal of chemical theory and computation.

[54]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[55]  A. Suenaga,et al.  All-atom molecular dynamics analysis of multi-peptide systems reproduces peptide solubility in line with experimental observations , 2016, Scientific Reports.

[56]  Kumardeep Chaudhary,et al.  PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues , 2015, Biology Direct.

[57]  L. Belvisi,et al.  Metadynamics Simulations Rationalise the Conformational Effects Induced by N-Methylation of RGD Cyclic Hexapeptides. , 2015, Chemistry.

[58]  Evdokia Anagnostou,et al.  Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits , 2015, Front. Neurosci..

[59]  C. Abrams,et al.  Free energy and hidden barriers of the β-sheet structure of prion protein. , 2015, Journal of chemical theory and computation.

[60]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[61]  W. L. Jorgensen,et al.  Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field , 2015, Journal of chemical theory and computation.

[62]  Vincent A. Voelz,et al.  Molecular Simulation of Conformational Pre-Organization in Cyclic RGD Peptides , 2015, J. Chem. Inf. Model..

[63]  Hongtao Yu,et al.  Toward structure prediction of cyclic peptides. , 2015, Physical chemistry chemical physics : PCCP.

[64]  T. Head-Gordon,et al.  Disordered structural ensembles of vasopressin and oxytocin and their mutants. , 2015, The journal of physical chemistry. B.

[65]  F. Jiang,et al.  Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB. , 2015, The journal of physical chemistry. B.

[66]  Diwakar Shukla,et al.  Markov State Models Provide Insights into Dynamic Modulation of Protein Function , 2015, Accounts of chemical research.

[67]  Jérôme Leprince,et al.  International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, Urotensin II–Related Peptide, and Their Receptor: From Structure to Function , 2015, Pharmacological Reviews.

[68]  Joshua A. Kritzer,et al.  A bicyclic peptide scaffold promotes phosphotyrosine mimicry and cellular uptake. , 2014, Bioorganic & medicinal chemistry.

[69]  David C. Whitley,et al.  Conformation and dynamics of 8-Arg-vasopressin in solution , 2014, Journal of Molecular Modeling.

[70]  Horst Kessler,et al.  Receptor-bound conformation of cilengitide better represented by its solution-state structure than the solid-state structure. , 2014, Chemistry.

[71]  P. Derreumaux,et al.  Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. , 2014, Journal of chemical theory and computation.

[72]  Andrew J. Tebben,et al.  Macrocycle Conformational Sampling with MacroModel , 2014, J. Chem. Inf. Model..

[73]  D. Dupré,et al.  The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. , 2014, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[74]  Joshua A. Kritzer,et al.  Structured Cyclic Peptides That Bind the EH Domain of EHD1 , 2014, Biochemistry.

[75]  G. Stock,et al.  Principal component analysis of molecular dynamics: on the use of Cartesian vs. internal coordinates. , 2014, The Journal of chemical physics.

[76]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.

[77]  Dan Larhammar,et al.  Molecular evolution of GPCRs: Somatostatin/urotensin II receptors. , 2014, Journal of molecular endocrinology.

[78]  F. Jiang,et al.  Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L. , 2014, The journal of physical chemistry. B.

[79]  Vincent A. Voelz,et al.  Computational Screening and Selection of Cyclic Peptide Hairpin Mimetics by Molecular Simulation and Kinetic Network Models , 2014, J. Chem. Inf. Model..

[80]  William Sinko,et al.  Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation , 2014, Journal of chemical theory and computation.

[81]  G. Shields,et al.  Structural analysis of α-fetoprotein (AFP)-like peptides with anti-breast-cancer properties. , 2014, Journal of Physical Chemistry B.

[82]  Thomas Steinbrecher,et al.  Controlling biological activity with light: diarylethene-containing cyclic peptidomimetics. , 2014, Angewandte Chemie.

[83]  C. Merten,et al.  Solvent-induced conformational changes in cyclic peptides: a vibrational circular dichroism study. , 2014, Physical chemistry chemical physics : PCCP.

[84]  Stefano Piana,et al.  Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. , 2014, Current opinion in structural biology.

[85]  R. Stupp,et al.  Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression , 2014, Journal of Neuro-Oncology.

[86]  George A. Khoury,et al.  Forcefield_NCAA: Ab Initio Charge Parameters to Aid in the Discovery and Design of Therapeutic Proteins and Peptides with Unnatural Amino Acids and Their Application to Complement Inhibitors of the Compstatin Family , 2014, ACS synthetic biology.

[87]  K. Merz,et al.  Stereochemistry rules: a single stereocenter changes the conformation of a cyclic tetrapeptide. , 2013, The journal of physical chemistry. B.

[88]  X. Qiu,et al.  Visualizing Cyclic Peptide Hydration at the Single-Molecule Level , 2013, Scientific Reports.

[89]  Chong Li,et al.  Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53-MDM2 interaction. , 2013, Bioorganic & medicinal chemistry.

[90]  Woody Sherman,et al.  Improved Docking of Polypeptides with Glide , 2013, J. Chem. Inf. Model..

[91]  Haruki Nakamura,et al.  A virtual-system coupled multicanonical molecular dynamics simulation: principles and applications to free-energy landscape of protein-protein interaction with an all-atom model in explicit solvent. , 2013, The Journal of chemical physics.

[92]  S. Peng,et al.  A Lead (II) 3D Coordination Polymer Based on a Marine Cyclic Peptide Motif , 2013, Molecules.

[93]  A. Engelman,et al.  Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation , 2013, Proceedings of the National Academy of Sciences.

[94]  N. Doltsinis,et al.  Conformation and dynamics of a cyclic disulfide-bridged peptide: effects of temperature and solvent. , 2013, The journal of physical chemistry. B.

[95]  H. Kessler,et al.  N‐Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions , 2013 .

[96]  R. Longhi,et al.  IsoDGR-tagged albumin: a new αvβ3 selective carrier for nanodrug delivery to tumors. , 2013, Small.

[97]  Horst Kessler,et al.  N-methylation of peptides and proteins: an important element for modulating biological functions. , 2013, Angewandte Chemie.

[98]  Haruki Nakamura,et al.  Virtual states introduced for overcoming entropic barriers in conformational space , 2012, Biophysics.

[99]  A. Engelman,et al.  Retroviral Integrase Proteins and HIV-1 DNA Integration* , 2012, The Journal of Biological Chemistry.

[100]  S. Verma,et al.  Morphological transition triggered by mannose conjugation to a cyclic hexapeptide , 2012 .

[101]  Jonathan N. Jaworski,et al.  De novo structure prediction and experimental characterization of folded peptoid oligomers , 2012, Proceedings of the National Academy of Sciences.

[102]  Levi C. T. Pierce,et al.  Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics , 2012, Journal of chemical theory and computation.

[103]  Horst Kessler,et al.  Intestinal permeability of cyclic peptides: common key backbone motifs identified. , 2012, Journal of the American Chemical Society.

[104]  Pierre Tufféry,et al.  PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides , 2012, Nucleic Acids Res..

[105]  Rhiju Das,et al.  Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements. , 2012, Journal of chemical theory and computation.

[106]  Xiaobing Wang,et al.  New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus. , 2012, Bioorganic & medicinal chemistry letters.

[107]  Cheng Luo,et al.  Experimental and computational insights into the conformations of tunicyclin E, a new cycloheptapeptide from Psammosilene tunicoides , 2012 .

[108]  Annick Thomas,et al.  In silico predictions of 3D structures of linear and cyclic peptides with natural and non‐proteinogenic residues , 2012, Journal of peptide science : an official publication of the European Peptide Society.

[109]  Li Di,et al.  Development of a new permeability assay using low-efflux MDCKII cells. , 2011, Journal of pharmaceutical sciences.

[110]  R. Dror,et al.  How Fast-Folding Proteins Fold , 2011, Science.

[111]  Ilia A Guzei,et al.  Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of α-chiral aromatic N-1-naphthylethyl side chains. , 2011, Journal of the American Chemical Society.

[112]  Yizhong Zhang,et al.  On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds , 2011, Nature chemical biology.

[113]  G Andrew Woolley,et al.  Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.

[114]  Haruki Nakamura,et al.  A free-energy landscape for coupled folding and binding of an intrinsically disordered protein in explicit solvent from detailed all-atom computations. , 2011, Journal of the American Chemical Society.

[115]  R. Glen,et al.  Discovery of a Competitive Apelin Receptor (APJ) Antagonist , 2011, ChemMedChem.

[116]  F. Hou,et al.  Bioactive compounds from the aerial parts of Brachystemma calycinum and structural revision of an octacyclopeptide. , 2011, Journal of natural products.

[117]  K. Lindorff-Larsen,et al.  How robust are protein folding simulations with respect to force field parameterization? , 2011, Biophysical journal.

[118]  Haruki Nakamura,et al.  Theory for trivial trajectory parallelization of multicanonical molecular dynamics and application to a polypeptide in water , 2011, J. Comput. Chem..

[119]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[120]  T. Head-Gordon,et al.  Optimizing Protein-Solvent Force Fields to Reproduce Intrinsic Conformational Preferences of Model Peptides. , 2011, Journal of chemical theory and computation.

[121]  A. Spitaleri,et al.  Use of metadynamics in the design of isoDGR-based αvβ3 antagonists to fine-tune the conformational ensemble. , 2011, Angewandte Chemie.

[122]  Peter D. Newell,et al.  A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage , 2011, PLoS biology.

[123]  Peter D. Newell,et al.  Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis , 2011, PLoS biology.

[124]  Horst Kessler,et al.  Cilengitide: The First Anti-Angiogenic Small Molecule Drug Candidate. Design, Synthesis and Clinical Evaluation , 2010, Anti-cancer agents in medicinal chemistry.

[125]  R. Best,et al.  Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. , 2010, The journal of physical chemistry. B.

[126]  Joseph A. Bank,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Table S1 References Movies S1 to S3 Atomic-level Characterization of the Structural Dynamics of Proteins , 2022 .

[127]  R. Glen,et al.  Exploring the ‘RPRL’ Motif of Apelin‐13 through Molecular Simulation and Biological Evaluation of Cyclic Peptide Analogues , 2010, ChemMedChem.

[128]  Daniel J. Sindhikara,et al.  Exchange Often and Properly in Replica Exchange Molecular Dynamics. , 2010, Journal of chemical theory and computation.

[129]  Piotr Cieplak,et al.  The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. , 2010, Physical chemistry chemical physics : PCCP.

[130]  Jérôme Leprince,et al.  Urotensin II, from fish to human , 2010, Annals of the New York Academy of Sciences.

[131]  Benjamin A. Ellingson,et al.  Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database , 2010, J. Chem. Inf. Model..

[132]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[133]  D. Hamelberg,et al.  Reoptimization of the AMBER force field parameters for peptide bond (Omega) torsions using accelerated molecular dynamics. , 2009, The journal of physical chemistry. B.

[134]  Richard Bonneau,et al.  A preliminary survey of the peptoid folding landscape. , 2009, Journal of the American Chemical Society.

[135]  M. Parrinello,et al.  Enhanced sampling in the well-tempered ensemble. , 2009, Physical review letters.

[136]  R. Raptis,et al.  Euryjanicin A: a new cycloheptapeptide from the Caribbean marine sponge Prosuberites laughlini. , 2009, Tetrahedron letters.

[137]  E. Coutsias,et al.  Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling , 2009, Nature Methods.

[138]  D. Langelaan,et al.  Headgroup-Dependent Membrane Catalysis of Apelin−Receptor Interactions Is Likely , 2009, The journal of physical chemistry. B.

[139]  P. Carroll,et al.  Nascent structure-activity relationship study of a diastereomeric series of kappa opioid receptor antagonists derived from CJ-15,208. , 2009, Bioorganic & medicinal chemistry letters.

[140]  G. Hummer,et al.  Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. , 2009, The journal of physical chemistry. B.

[141]  W. Young,et al.  Oxytocin: The great facilitator of life , 2009, Progress in Neurobiology.

[142]  Haruki Nakamura,et al.  Verifying trivial parallelization of multicanonical molecular dynamics for conformational sampling of a polypeptide in explicit water , 2009 .

[143]  Charles A Laughton,et al.  COCO: A simple tool to enrich the representation of conformational variability in NMR structures , 2009, Proteins.

[144]  G. Shields Computational approaches for the design of peptides with anti-breast cancer properties. , 2009, Future medicinal chemistry.

[145]  R. Dror,et al.  Long-timescale molecular dynamics simulations of protein structure and function. , 2009, Current opinion in structural biology.

[146]  S. Piana,et al.  Exploring the folding free energy landscape of insulin using bias exchange metadynamics. , 2009, The journal of physical chemistry. B.

[147]  M. Saviano,et al.  Structure of cyclic peptides: the crystal and solution conformation of cyclo(Phe-Phe-Aib-Leu-Pro). , 2009, The journal of peptide research : official journal of the American Peptide Society.

[148]  R. Hodges,et al.  Gramicidin S is active against both gram-positive and gram-negative bacteria. , 2009, International journal of peptide and protein research.

[149]  I. Karle,et al.  Variability in the backbone conformation of cyclic pentapeptides. Crystal structure of cyclic(Gly-L-Pro-D-Phe-Gly-L-Ala). , 2009, International journal of peptide and protein research.

[150]  W. Cook,et al.  Crystal structure and conformation of the cyclic tetramer of a repeat tripeptide of elastin, cyclo(L-valyl-L-prolylglycyl)4. , 2009, International journal of peptide and protein research.

[151]  I. Karle,et al.  Crystal structure of the 1:1 mixture of cyclic (L‐Ala‐L‐Pro‐L‐Phe‐L‐Pro) and cyclic (L‐Ala‐L‐Pro‐D‐Phe‐L‐Pro) , 2009 .

[152]  I. Karle,et al.  Unusual intramolecular hydrogen bonding in cycloamanide A, cyclic (LPro-LVal-LPhe-LPhe-LAla-Gly). A crystal structure analysis. , 2009, International journal of peptide and protein research.

[153]  T. Reddy,et al.  Structural insight into G-protein coupled receptor binding by apelin. , 2009, Biochemistry.

[154]  C. Walsh,et al.  How Nature Morphs Peptide Scaffolds into Antibiotics , 2009, Chembiochem : a European journal of chemical biology.

[155]  B. Bodo,et al.  3D-structure of cycloreticulin C and glabrin A, cyclopeptides from the seeds of Annona reticulata , 2009 .

[156]  Zoe R. Donaldson,et al.  Oxytocin, Vasopressin, and the Neurogenetics of Sociality , 2008, Science.

[157]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[158]  R. Longhi,et al.  Structural Basis for the Interaction of isoDGR with the RGD-binding Site of αvβ3 Integrin* , 2008, Journal of Biological Chemistry.

[159]  K. Dill,et al.  Biomimetic nanostructures: creating a high-affinity zinc-binding site in a folded nonbiological polymer. , 2008, Journal of the American Chemical Society.

[160]  D. van der Spoel,et al.  A temperature predictor for parallel tempering simulations. , 2008, Physical chemistry chemical physics : PCCP.

[161]  Horst Kessler,et al.  Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. , 2008, Angewandte Chemie.

[162]  Hugh Nymeyer,et al.  How Efficient Is Replica Exchange Molecular Dynamics? An Analytic Approach. , 2008, Journal of chemical theory and computation.

[163]  A. Engelman,et al.  The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication , 2008, PLoS pathogens.

[164]  Michael G Thomas,et al.  Nonribosomal peptide synthetases involved in the production of medically relevant natural products. , 2008, Molecular pharmaceutics.

[165]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[166]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[167]  E. Sikorska,et al.  Conformational studies of vasopressin and mesotocin using NMR spectroscopy and molecular modelling methods. Part I: studies in water , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[168]  Horst Kessler,et al.  Multiple N-methylation by a designed approach enhances receptor selectivity. , 2007, Journal of medicinal chemistry.

[169]  J. Mccammon,et al.  Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. , 2007, The Journal of chemical physics.

[170]  Katrina W. Lexa,et al.  Computational design and experimental discovery of an antiestrogenic peptide derived from alpha-fetoprotein. , 2007, Journal of the American Chemical Society.

[171]  A. Laio,et al.  A bias-exchange approach to protein folding. , 2007, The journal of physical chemistry. B.

[172]  A. Roitberg,et al.  Coupling of replica exchange simulations to a non-Boltzmann structure reservoir. , 2007, The journal of physical chemistry. B.

[173]  Vojtech Spiwok,et al.  Metadynamics in essential coordinates: free energy simulation of conformational changes. , 2007, The journal of physical chemistry. B.

[174]  Syma Khalid,et al.  Coarse-grained molecular dynamics simulations of membrane proteins and peptides. , 2007, Journal of structural biology.

[175]  N. Tan,et al.  Study on the spatial structure of annomuricatin A, a cyclohexapeptide from the seeds of Annona muricata , 2007 .

[176]  Francesco Luigi Gervasio,et al.  From A to B in free energy space. , 2007, The Journal of chemical physics.

[177]  Viktor Hornak,et al.  Improving Convergence of Replica-Exchange Simulations through Coupling to a High-Temperature Structure Reservoir. , 2007, Journal of chemical theory and computation.

[178]  X. Bu,et al.  EFFECT OF THE ANGIOGENESIS INHIBITOR CILENGITIDE (EMD 121974) ON GLIOBLASTOMA GROWTH IN NUDE MICE , 2006, Neurosurgery.

[179]  R. Longhi,et al.  Spontaneous Formation of L-Isoaspartate and Gain of Function in Fibronectin* , 2006, Journal of Biological Chemistry.

[180]  P. Hamm,et al.  Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy , 2006, Nature.

[181]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[182]  A. Laio,et al.  Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. , 2006, Journal of the American Chemical Society.

[183]  J. Peters,et al.  The Vasopressin System: Physiology and Clinical Strategies , 2006, Anesthesiology.

[184]  C. Renner,et al.  Azobenzene as Conformational Switch in Model Peptides , 2006, Chembiochem : a European journal of chemical biology.

[185]  F. Calvo,et al.  Performances of Wang-Landau algorithms for continuous systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[186]  C. Vega,et al.  A general purpose model for the condensed phases of water: TIP4P/2005. , 2005, The Journal of chemical physics.

[187]  Hung-Yun Lin,et al.  Prevention of N-Methyl-N-Nitrosourea–Induced Breast Cancer by α-Fetoprotein (AFP)–Derived Peptide, a Peptide Derived from the Active Site of AFP , 2005, Clinical Cancer Research.

[188]  Christian Appelt,et al.  Structure of the Antimicrobial, Cationic Hexapeptide Cyclo(RRWWRF) and Its Analogues in Solution and Bound to Detergent Micelles , 2005, Chembiochem : a European journal of chemical biology.

[189]  P. Nguyen,et al.  Structure and energy landscape of a photoswitchable peptide: A replica exchange molecular dynamics study , 2005, Proteins.

[190]  Byoung-Chul Lee,et al.  Folding a nonbiological polymer into a compact multihelical structure. , 2005, Journal of the American Chemical Society.

[191]  V. Pattabhi,et al.  Trypsin inhibition by a peptide hormone: crystal structure of trypsin-vasopressin complex. , 2005, Journal of molecular biology.

[192]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[193]  P. Tavan,et al.  Multiple loop conformations of peptides predicted by molecular dynamics simulations are compatible with nuclear magnetic resonance. , 2005, Biochemistry.

[194]  I. Karle,et al.  Crystal structure of cyclic (APGVGV)2, an analog of elastin, and a suggested mechanism for elongation/contraction of the molecule , 2005, Biopolymers.

[195]  Michel Roberge,et al.  Dominicin, a cyclic octapeptide, and laughine, a bromopyrrole alkaloid, isolated from the Caribbean marine sponge Eurypon laughlini. , 2005, Journal of natural products.

[196]  Vijay S Pande,et al.  Dimerization of the p53 oligomerization domain: identification of a folding nucleus by molecular dynamics simulations. , 2005, Journal of molecular biology.

[197]  C. Hall,et al.  Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[198]  W. Sander,et al.  Small Cyclic Disulfide Peptides: Synthesis in Preparative Amounts and Characterization by Means of NMR and FT‐IR Spectroscopy , 2004 .

[199]  M. Clozel,et al.  Pharmacology of the Urotensin-II Receptor Antagonist Palosuran (ACT-058362; 1-[2-(4-Benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea Sulfate Salt): First Demonstration of a Pathophysiological Role of the Urotensin System , 2004, Journal of Pharmacology and Experimental Therapeutics.

[200]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[201]  Hassan Oulyadi,et al.  Structure–activity relationships and structural conformation of a novel urotensin II-related peptide , 2004, Peptides.

[202]  L. Bolund,et al.  Differential cellular handling of defective arginine vasopressin (AVP) prohormones in cells expressing mutations of the AVP gene associated with autosomal dominant and recessive familial neurohypophyseal diabetes insipidus. , 2004, The Journal of clinical endocrinology and metabolism.

[203]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[204]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[205]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[206]  Greg L. Hura,et al.  Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. , 2004, The Journal of chemical physics.

[207]  H. Jacobson,et al.  Synthetic peptide derived from alpha-fetoprotein inhibits growth of human breast cancer: investigation of the pharmacophore and synthesis optimization. , 2004, The journal of peptide research : official journal of the American Peptide Society.

[208]  D. Case,et al.  Exploring protein native states and large‐scale conformational changes with a modified generalized born model , 2004, Proteins.

[209]  Vijay S Pande,et al.  Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[210]  M. Marahiel,et al.  Learning from Nature's Drug Factories: Nonribosomal Synthesisof MacrocyclicPeptides , 2003, Journal of bacteriology.

[211]  Nobuyuki Miyajima,et al.  Identification of urotensin II-related peptide as the urotensin II-immunoreactive molecule in the rat brain. , 2003, Biochemical and biophysical research communications.

[212]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[213]  R. Pomerantz,et al.  Structural and functional study of the apelin-13 peptide, an endogenous ligand of the HIV-1 coreceptor, APJ. , 2003, Biochemistry.

[214]  K. Schulten,et al.  Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality , 2003 .

[215]  Robert P. Davis,et al.  Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin , 2003, Journal of neurochemistry.

[216]  V. Pande,et al.  Absolute comparison of simulated and experimental protein-folding dynamics , 2002, Nature.

[217]  S. Muller,et al.  A retro-inverso peptide analogue of influenza virus hemagglutinin B-cell epitope 91-108 induces a strong mucosal and systemic immune response and confers protection in mice after intranasal immunization. , 2002, Molecular immunology.

[218]  Junichi Takagi,et al.  Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling , 2002, Cell.

[219]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[220]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[221]  H. Kessler,et al.  Reproducability and transferability of topological properties; experimental charge density of the hexapeptide cyclo-(D,L-Pro)2-(L-Ala)4 monohydrate. , 2002, Acta crystallographica. Section B, Structural science.

[222]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[223]  H. Jacobson,et al.  A peptide derived from α-fetoprotein prevents the growth of estrogen-dependent human breast cancers sensitive and resistant to tamoxifen , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[224]  A. Barron,et al.  Peptoid Oligomers with α‐Chiral, Aromatic Side Chains: Sequence Requirements for the Formation of Stable Peptoid Helices. , 2001 .

[225]  J. Rose,et al.  Structures of an unliganded neurophysin and its vasopressin complex: Implications for binding and allosteric mechanisms , 2001, Protein science : a publication of the Protein Society.

[226]  D. Craik,et al.  Solution structures by 1H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant. , 2001, Journal of molecular biology.

[227]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[228]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[229]  Haruki Nakamura,et al.  Energy landscape of a β-hairpin peptide in explicit water studied by multicanonical molecular dynamics , 2001 .

[230]  C. Renner,et al.  Photomodulation of conformational states. I. Mono- and bicyclic peptides with (4-amino)phenylazobenzoic acid as backbone constituent. , 2000, Biopolymers.

[231]  C. Renner,et al.  Photomodulation of conformational states. II. Mono- and bicyclic peptides with (4-aminomethyl)phenylazobenzoic acid as backbone constituent. , 2000, Biopolymers.

[232]  Y. Sugita,et al.  Multidimensional replica-exchange method for free-energy calculations , 2000, cond-mat/0009120.

[233]  Li Zhang,et al.  Ligand Binding to Integrins* , 2000, The Journal of Biological Chemistry.

[234]  H. Jacobson,et al.  Alpha-fetoprotein-derived antiestrotrophic octapeptide. , 2000, Biochimica et biophysica acta.

[235]  D. Sargent,et al.  The retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[236]  A. Kidera,et al.  Free energy landscapes of peptides by enhanced conformational sampling. , 2000, Journal of molecular biology.

[237]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[238]  L. Moroder,et al.  Photomodulation of conformational states. Synthesis of cyclic peptides with backbone‐azobenzene moieties , 1999, Journal of peptide science : an official publication of the European Peptide Society.

[239]  Matthias Buck,et al.  Internal and Overall Peptide Group Motion in Proteins: Molecular Dynamics Simulations for Lysozyme Compared with Results from X-ray and NMR Spectroscopy , 1999 .

[240]  Horst Kessler,et al.  N-methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists , 1999 .

[241]  P. White,et al.  Autosomal recessive familial neurohypophyseal diabetes insipidus with continued secretion of mutant weakly active vasopressin. , 1999, Human molecular genetics.

[242]  M. Karplus,et al.  Solution conformations and thermodynamics of structured peptides: molecular dynamics simulation with an implicit solvation model. , 1998, Journal of molecular biology.

[243]  H. Jacobson,et al.  Alpha-fetoprotein derived from a human hepatoma prevents growth of estrogen-dependent human breast cancer xenografts. , 1998, Clinical cancer research : an official journal of the American Association for Cancer Research.

[244]  S. Hinuma,et al.  Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. , 1998, Biochemical and biophysical research communications.

[245]  X. Daura,et al.  Reversible peptide folding in solution by molecular dynamics simulation. , 1998, Journal of molecular biology.

[246]  K A Dill,et al.  Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[247]  L. Serrano,et al.  Reading protein sequences backwards. , 1998, Folding & design.

[248]  V. Dive,et al.  Accounting for Conformational Variability in NMR Structure of Cyclopeptides: Ensemble Averaging of Interproton Distance and Coupling Constant Restraints , 1997 .

[249]  H. Anke,et al.  Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. II. Isolation and structure determination. , 1997 .

[250]  S. Goodman,et al.  Stereoisomerism and Biological Activity of the Selective and Superactive αvβ3 Integrin Inhibitor cyclo(-RGDfV-) and Its Retro-Inverso Peptide , 1997 .

[251]  H. Morita,et al.  Conformation of cyclic heptapeptides: solid and solution state conformation of yunnanin A , 1997 .

[252]  A. Kidera,et al.  Multicanonical Ensemble Generated by Molecular Dynamics Simulation for Enhanced Conformational Sampling of Peptides , 1997 .

[253]  J M Thornton,et al.  Multiple solution conformations of the integrin-binding cyclic pentapeptide cyclo(-Ser-D-Leu-Asp-Val-Pro-). Analysis of the (phi, psi) space available to cyclic pentapeptides. , 1996, European journal of biochemistry.

[254]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[255]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[256]  P. Kollman Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the Properties of Organic and Biological Molecules , 1996 .

[257]  S. Goodman,et al.  Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists , 1996 .

[258]  Michael R. Boyd,et al.  Isolation and Crystal Structure of Stylopeptide 1, A New Marine Porifera Cycloheptapeptide , 1995 .

[259]  Motoo Shiro,et al.  Crystal and solution forms of a cyclic heptapeptide, pseudostellarin D1) , 1995 .

[260]  A. Mark,et al.  Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. , 1995, Journal of molecular biology.

[261]  G T Montelione,et al.  Crankshaft motions of the polypeptide backbone in molecular dynamics simulations of human type-α transforming growth factor , 1995, Journal of biomolecular NMR.

[262]  M. Knepper,et al.  Oxytocin as an antidiuretic hormone. II. Role of V2 vasopressin receptor. , 1995, The American journal of physiology.

[263]  Motoo Shiro,et al.  Conformational analysis of a cyclic hexapeptide, segetalin A from Vaccaria segetalis , 1995 .

[264]  Walter H. Moos,et al.  Comparison of the proteolytic susceptibilities of homologous L‐amino acid, D‐amino acid, and N‐substituted glycine peptide and peptoid oligomers , 1995 .

[265]  P. Kollman,et al.  Molecular Dynamics Simulations on Solvated Biomolecular Systems: The Particle Mesh Ewald Method Leads to Stable Trajectories of DNA, RNA, and Proteins , 1995 .

[266]  Wilfred F. van Gunsteren,et al.  A Force Field for Liquid Dimethyl Sulfoxide and Physical Properties of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation , 1995 .

[267]  G. Müller,et al.  Design of superactive and selective integrin receptor antagonists containing the RGD sequence , 1995, Letters in Peptide Science.

[268]  M. Birnbaumer,et al.  An extracellular congenital nephrogenic diabetes insipidus mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand, and coupling to the Gs/adenylyl cyclase system. , 1994, Molecular endocrinology.

[269]  N el Tayar,et al.  Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. , 1993, Journal of medicinal chemistry.

[270]  S. Schreiber,et al.  Structure-based design of a cyclophilin-calcineurin bridging ligand. , 1993, Science.

[271]  M. Gregory,et al.  X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis. , 1993, The Journal of clinical investigation.

[272]  J. Briand,et al.  Conformational mobility in cyclic oligopeptides , 1993, Biopolymers.

[273]  Gerald J. Bakus,et al.  Isolation and structure of stylostatin 1 from the Papua New Guinea marine sponge Stylotella aurantium , 1992 .

[274]  P. Guptasarma,et al.  Reversal of peptide backbone direction may result in the mirroring of protein structure , 1992, FEBS letters.

[275]  H. Matter,et al.  Structure and Dynamics of a Synthetic O‐Glycosylated Cyclopeptide in Solution Determined by NMR Spectroscopy and MD Calculations. , 1992 .

[276]  H. Matter,et al.  Structure and dynamics of synthetic O-glycosylated cyclopeptide in solution determined by NMR spectroscopy and MD calculations , 1992 .

[277]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[278]  M. Karplus,et al.  Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations , 1991, Proteins.

[279]  R. Timpl,et al.  Arg‐Gly‐Asp constrained within cyclic pentapoptides Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1 , 1991, FEBS letters.

[280]  K. Kopple,et al.  Conformation of cyclic octapeptides. VI. Structure of cyclo-bis-(-L-alanyl-glycyl-L-prolyl-L-phenylalanyl-) tetrahydrate. , 1991, Acta crystallographica. Section C, Crystal structure communications.

[281]  J. Kuriyan,et al.  Convergent evolution of similar function in two structurally divergent enzymes , 1991, Nature.

[282]  K. Bhandary Conformation of cyclo-bis(-L-valyl-L-proplyl-D-alanyl-), a synthetic cyclic hexapeptide. , 1991, Acta crystallographica. Section C, Crystal structure communications.

[283]  C. E. Peishoff,et al.  Conformations of Cyclic Heptapeptides: Crystal Structure and Computational Studies of Evolidine , 1991 .

[284]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[285]  B. Tinant,et al.  Structure of the cyclohexapeptide cleromyrine II trihydrate. , 1990, Acta crystallographica. Section C, Crystal structure communications.

[286]  D. van der Helm,et al.  Structure and conformations of two cycloisomeric hexapeptides: cyclo(L-Leu-L-Phe-Gly-D-Phe-L-Leu-Gly-) trihydrate and cyclo(L-Phe-L-Leu-Gly-D-Leu-L-Phe-Gly-) trihydrate. , 1990, Acta crystallographica. Section B, Structural science.

[287]  J. Rizo,et al.  Cyclic pentapeptides as models for reverse turns: Determination of the equilibrium distribution between type I and type II conformations of Pro‐Asn and Pro‐Ala β‐turns , 1990, Biopolymers.

[288]  W. Lipscomb,et al.  Structure of cyclo(-L-prolylglycyl-)2 trihydrate. , 1989, Acta crystallographica. Section C, Crystal structure communications.

[289]  A. Lombardi,et al.  Regularly alternating L,D‐peptides. III. Hexacyclic peptides from valine or phenylalanine , 1989, Biopolymers.

[290]  L. Gierasch,et al.  Crystal structure of cyclo(Gly1-L-Pro2-D-Phe3-L-Ala4-L-Pro5): a cyclic pentapeptide with a Gly-L-Pro .delta. turn , 1988 .

[291]  C. Griesinger,et al.  Peptide Conformations. Part 46. Conformational Analysis of a Superpotent Cytoprotective Cyclic Somatostatin Analogue. , 1988 .

[292]  K. Kopple,et al.  Conformations of cyclic octapeptides. 5. Crystal structure of cyclo(Cys-Gly-Pro-Phe)2 and rotating frame relaxation (T1.rho.) NMR studies of internal mobility in cyclic octapeptides , 1988 .

[293]  T. Blundell,et al.  Crystal structure analysis of deamino-oxytocin: conformational flexibility and receptor binding. , 1988, Science.

[294]  Horst Kessler,et al.  Peptide conformations. 46. Conformational analysis of a superpotent cytoprotective cyclic somatostatin analog , 1988 .

[295]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[296]  Lila M. Gierasch,et al.  Crystal structure of cyclo(Gly-L-Pro-D-Phe-Gly-Val): an example of a new type of three-residue turn , 1987 .

[297]  E Ruoslahti,et al.  New perspectives in cell adhesion: RGD and integrins. , 1987, Science.

[298]  H. Kessler,et al.  Conformational Prerequisites for the in vitro Inhibition of Cholate Uptake in Hepatocytes by Cyclic Analogues of Antamanide and Somatostatin , 1986 .

[299]  K. Kopple,et al.  Conformations of cyclic octapeptides. 3. Cyclo-(D-Ala-Gly-Pro-Phe)2. Conformations in crystals and a T1p examination of internal mobility in solution , 1986 .

[300]  R. Hughes,et al.  Structure of pressinoic acid: the cyclic moiety of vasopressin. , 1986, Science.

[301]  K. Kopple,et al.  Conformations of cyclic octapeptides. 2. Crystal structure of cyclo(D-Ala-Gly-Pro-D-Phe)2. Solvent exposure of backbone protons in crystal and solution conformations , 1985 .

[302]  L. Gierasch,et al.  Crystal and solution structures of cyclo(Ala-Pro-Gly-D-Phe-Pro): a new type of cyclic pentapeptide which undergoes cis-trans isomerization of the Ala-Pro bond , 1985 .

[303]  E Ruoslahti,et al.  Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[304]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[305]  K. Kopple,et al.  Synthesis and conformation studies by x-ray crystallography and nuclear magnetic resonance of cyclo(L-Phe-L-Pro-D-Ala)2 , 1984 .

[306]  Erkki Ruoslahti,et al.  Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule , 1984, Nature.

[307]  T. Nakashima,et al.  Structure of cyclo(‐l‐Pro‐l‐Pro‐Gly‐l‐Pro‐l‐Leu‐Gly‐) methanol solvate monohydrate, C25H38N6O6.CH3OH.H2O , 1984 .

[308]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[309]  T. Shimizu,et al.  Crystal structure and conformation of a cyclic tetrapeptide cyclo(L‐Pro‐Sar)2 containing all‐cis peptide units , 1983 .

[310]  C. Barnes,et al.  Conformation and structures of two cycloisomeric hexapeptides: cyclo(-l-Phe-d-Leu-Gly-l-Phe-l-Leu-Gly-) tetrahydrate and cyclo(-l-Phe-d-Leu-Gly-d-Phe-l-Leu-Gly-) dihydrate , 1982 .

[311]  E. Blout Cyclic peptides: Past, present, and future , 1981 .

[312]  K. Kopple,et al.  Crystal structure and conformation of cyclo-(glycyl-D-leucyl-L-leucyl)2 , 1981 .

[313]  K. Kopple,et al.  Crystal structure and solution studies of the molecular conformation of the cyclic hexapeptide cyclo-(Gly-L-His-Gly-L-Ala-L-Tyr-Gly) , 1981 .

[314]  M. Hossain,et al.  Conformation of cyclo(-l-Leu-l-Phe-Gly-d-Leu-d-Phe-Gly-) dihydrate , 1979 .

[315]  W. E. Thiessen,et al.  Crystal structure and molecular conformation of the cyclic hexapeptide cyclo-(Gly-L-Pro-Gly)2 , 1979 .

[316]  W. E. Thiessen,et al.  Crystal structure and conformation of the cyclic hexapeptide cyclo-(Gly-L-Pro-D-Ala)2 , 1979 .

[317]  M. Hossain,et al.  Conformation and crystal structures of two cycloisomeric hexapeptides: cyclo-(L-alanyl-L-alanylglycylglycyl-L-alanylglycyl) monohydrate (I) and cyclo-(L-alanyl-L-alanylglycyl-L-alanylglycylglycyl) dihydrate (II) , 1978 .

[318]  I. Karle CRYSTAL STRUCTURE AND CONFORMATION OF CYCLO-(GLYCYLPROLYLGLYCYL-D-ALANYLPROLYL) CONTAINING 4 1 AND 3 1 INTRAMOLECULAR HYDROGEN BONDS , 1978 .

[319]  K. Kopple,et al.  Conformation of cyclic peptides. 10. Conformational averaging in peptides with the sequence cyclo-(Gly-D-Xxx-L-Yyy)2 , 1978 .

[320]  J N Brown,et al.  Crystal structure and molecular conformation of the hydrated cyclic hexapeptide cyclo(L-Ala-L-Pro-D-Phe)2. , 1976, Journal of the American Chemical Society.

[321]  G. Kartha,et al.  Structure and conformation of cyclo(tri-L-prolyl) in the crystalline state. , 1976, Journal of the American Chemical Society.

[322]  J. Borel,et al.  Biological effects of cyclosporin A: A new antilymphocytic agent , 1976, Agents and actions.

[323]  I. Karle,et al.  Conformation of the cyclic tetrapeptide dihydrochlamydocin. Iabu‐L‐Phe‐D‐Pro‐LX, and experimental values for 3 → 1 intramolecular hydrogen bonds by X‐ray diffraction , 1976, Biopolymers.

[324]  G. Kartha,et al.  The crystal structure and molecular conformation of cyclo‐l‐prolyl‐l‐prolyl‐l‐hydroxyproline, a cyclic tripeptide , 1975 .

[325]  G. Kartha,et al.  Structure and Conformation of a Cyclic Tripeptide , 1974, Nature.

[326]  V. Hruby,et al.  300-MHz nuclear magnetic resonance study of oxytocin aqueous solution: conformational implications. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[327]  A. I. Brewster,et al.  The conformational characteristics in solution of the cyclic hexapeptide Gly-Gly-D-Ala-D-Ala-Gly-Gly. , 1972, Journal of the American Chemical Society.

[328]  K. Kopple,et al.  Conformations of cyclic peptides. VI. Factors influencing mono-, 1,4-di-, and 1,2,4-trisubstituted cyclic hexapeptide backbones. , 1972, Journal of the American Chemical Society.

[329]  J. Feeney,et al.  Conformational studies of oxytocin and lysine vasopressin in aqueous solution using high resolution NMR spectroscopy. , 1971, Nature: New biology.

[330]  E. Helfand,et al.  Theory of the Kinetics of Conformational Transitions in Polymers , 1971 .

[331]  J. W. Gibson,et al.  The conformation and crystal structure of the cyclic polypeptide -gly-gly-D-ala-D-ala-gly-gly .3H2O. , 1970, Journal of the American Chemical Society.

[332]  I. Karle,et al.  An application of a new phase determination procedure to the structure of cyclo(hexaglycyl)demihydrate , 1963 .

[333]  G. F. Gause,et al.  Gramicidin S and its use in the Treatment of Infected Wounds , 1944, Nature.

[334]  Melanie Keller,et al.  Essentials Of Computational Chemistry Theories And Models , 2016 .

[335]  Vincent A. Voelz,et al.  Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER. , 2011, Biopolymers.

[336]  G. Guillon,et al.  Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. , 2008, Progress in brain research.

[337]  Katrina W. Lexa,et al.  The search for low energy conformational families of small peptides: Searching for active conformations of small peptides in the absence of a known receptor , 2007 .

[338]  J. Wilce,et al.  NMR analysis of G7-18NATE, a nonphosphorylated cyclic peptide inhibitor of the Grb7 adapter protein. , 2007, Biopolymers.

[339]  G. Mizejewski,et al.  Inhibition of Estrogen-dependent Breast Cancer Growth by a Reaction Product of a-Fetoprotein and Estradici1 , 2006 .

[340]  James,et al.  a-Fetoprotein Derived from a Human Hepatoma Prevents Growth of Estrogen-dependent Human Breast Cancer Xenografts’ , 2005 .

[341]  Jun Zhou,et al.  Study on the spatial structure of brachystemin C, a new cyclic peptide from Brachystemma calycinum , 2004 .

[342]  S. Goodman,et al.  Nanomolar small molecule inhibitors for alphav(beta)6, alphav(beta)5, and alphav(beta)3 integrins. , 2002, Journal of medicinal chemistry.

[343]  Haruki Nakamura,et al.  Peptide free-energy profile is strongly dependent on the force field: Comparison of C96 and AMBER95 , 2000, J. Comput. Chem..

[344]  H. Bayley,et al.  A functional protein pore with a “retro” transmembrane domain , 1999, Protein science : a publication of the Protein Society.

[345]  J Hoflack,et al.  Functional architecture of vasopressin/oxytocin receptors. , 1999, Journal of receptor and signal transduction research.

[346]  P. Howse,et al.  Isolation and structure determination , 1998 .

[347]  Hiroshi Morita,et al.  Dichotomins A - E, new cyclic peptides from stellaria dichotoma L. var. lanceolata Bge. , 1996 .

[348]  L. Moroder,et al.  Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies. , 1996, Biopolymers.

[349]  Charles L. Brooks,et al.  Simulations of peptide conformational dynamics and thermodynamics , 1993 .

[350]  D. Faulds,et al.  Cyclosporin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. , 1993 .

[351]  E. Ruoslahti Fibronectin and its receptors. , 1988, Annual review of biochemistry.

[352]  P. Wessels,et al.  The isolation, structure, and absolute configuration of the mycotoxin, rhizonin A, a novel cyclic heptapeptide containing N-methyl-3-(3-furyl)alanine, produced by Rhizopus microsporus , 1983 .

[353]  M. Hollósi,et al.  Crystal Structure of cyclo-(Gly-l-Pro-l-Pro-Gly-l-Pro-l-Pro) Trihydrate. Unusual Conformational Characteristics of a Cyclic Hexapeptide , 1982 .

[354]  I. Karle Conformation of the cyclic pentapeptide Gly-L-Pro-L-Ser-D-Ala-L-Pro in the crystalline state and an example of rotational "isomerism" between analogs , 1979 .

[355]  M. Manning,et al.  Synthesis and some pharmacological properties of [4-threonine, 7-glycine]oxytocin, [1-(L-2-hydroxy-3-mercaptopropanoic acid), 4-threonine, 7-glycine]oxytocin (hydroxy[Thr4, Gly7]oxytocin), and [7-Glycine]oxytocin, peptides with high oxytocic-antidiuretic selectivity. , 1977, Journal of Medicinal Chemistry.

[356]  J. Dale,et al.  Unique conformation of the cyclic octapeptide of sarcosine and a related depsipeptide , 1973 .

[357]  N. A. Sörensen,et al.  Crystal Structure of Cyclotetrasarcosyl. , 1970 .