Co-operative dynamics in organelles.

Some organelles produce elementary life phenomena which are characterized by the spontaneous formation and/or maintenance of ordered macroscopic dynamics like e.g. the shortening of sarcomeres in striated muscle and the transmission of electrical impulses in an axon. It has been widely accepted that such organelles are organized molecular systems where molecular elements work independently under constraint of a more or less rigid and regular structure of the system. On the other hand, such organelles should be regarded as self-organizing systems if the ordered macroscopic dynamics are self-organized. As the macroscopic dynamics gradually emerge, the microscopic dynamics of its elements become linked to each other through a feedback loop. It is crucial for the feedback loop to operate that the macroscopic dynamics are "free" in their behavior. In the present paper, it is pointed out that the traditional view of independent molecular elements has been obtained from experiments in which, by means of external constraint, the macroscopic dynamics is "clamped". Under such conditions, the self-organizing system may behave as an organized one. Based on synergetics we propose criterions for proving self-organizing systems, and, by applying the criterions, we conclude that skeletal muscle actomysin is a co-operative element in the sense of self-organization.