Gegenbauer polynomials and semiseparable matrices.

In this paper, we develop a new O(n log n) algorithm for converting coefficients between expansions in different families of Gegenbauer polynomials up to a finite degree n. To this end, we show that the corresponding linear mapping is represented by the eigenvector matrix of an explicitly known diagonal plus upper triangular semiseparable matrix. The method is based on a new efficient algorithm for computing the eigendecomposition of such a matrix. Using fast summation techniques, the eigenvectors of an n × n matrix can be computed explicitly withO ` n2 ́ arithmetic operations and the eigenvector matrix can be applied to an arbitrary vector at cost O (n log n). All algorithms are accurate up to a prefixed accuracy ε. We provide brief numerical results.

[1]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[2]  Leon M. Hall,et al.  Special Functions , 1998 .

[3]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[4]  G. Golub,et al.  A bibliography on semiseparable matrices* , 2005 .

[5]  Daniel Potts,et al.  Fast evaluation of quadrature formulae on the sphere , 2008, Math. Comput..

[6]  Norman Yarvin,et al.  An Improved Fast Multipole Algorithm for Potential Fields on the Line , 1999 .

[7]  Victor Y. Pan,et al.  Polynomial and Rational Evaluation and Interpolation (with Structured Matrices) , 1999, ICALP.

[8]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[9]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[10]  Dennis M. Healy,et al.  Symmetry stabilization for fast discrete monomial transforms and polynomial evaluation , 1993 .

[11]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[12]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[13]  V. Rokhlin,et al.  Fast algorithms for polynomial interpolation, integration, and differentiation , 1996 .

[14]  Thomas Kailath,et al.  Fredholm resolvents, Wiener-Hopf equations, and Riccati differential equations , 1969, IEEE Trans. Inf. Theory.

[15]  Jens Keiner,et al.  Computing with Expansions in Gegenbauer Polynomials , 2009, SIAM J. Sci. Comput..

[16]  Gabriele Steidl,et al.  Fast algorithms for discrete polynomial transforms , 1998, Math. Comput..

[17]  Nicholas J. Higham,et al.  Fast Solution of Vandermonde-Like Systems Involving Orthogonal Polynomials , 1988 .

[18]  Reiji Suda,et al.  A fast spherical harmonics transform algorithm , 2002, Math. Comput..

[19]  I. Gohberg,et al.  Fast inversion of Hessenberg-quasiseparable-Vandermonde matrices and resulting recurrence relations and characterizations , 2022 .

[20]  Daniel Potts,et al.  Fast algorithms for discrete polynomial transforms on arbitrary grids , 2003 .

[21]  Per-Gunnar Martinsson,et al.  An Accelerated Kernel-Independent Fast Multipole Method in One Dimension , 2007, SIAM J. Sci. Comput..

[22]  Stefan Kunis,et al.  Fast spherical Fourier algorithms , 2003 .

[23]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[24]  Israel Gohberg,et al.  Eigenstructure of order-one-quasiseparable matrices. Three-term and two-term recurrence relations , 2005 .

[25]  Mark Tygert,et al.  Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..

[26]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[27]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[28]  F. Olver Asymptotics and Special Functions , 1974 .

[29]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[30]  Bradley K. Alpert,et al.  A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..

[31]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[32]  V. B. Uvarov,et al.  Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .

[33]  Marc Van Barel,et al.  Divide and conquer algorithms for computing the eigendecomposition of symmetric diagonal-plus-semiseparable matrices , 2005, Numerical Algorithms.

[34]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[35]  Shivkumar Chandrasekaran,et al.  A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices , 2004, Numerische Mathematik.

[36]  Frank Thomson Leighton,et al.  Preconditioned, Adaptive, Multipole-Accelerated Iterative Methods for Three-Dimensional First-Kind Integral Equations of Potential Theory , 1994, SIAM J. Sci. Comput..

[37]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[38]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[39]  Victor Y. Pan,et al.  Fast evaluation and interpolation at the Chebyshev sets of points , 1989 .

[40]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[41]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[42]  W. Hackbusch,et al.  On H2-Matrices , 2000 .

[43]  R. Vandebril,et al.  Semiseparable Matrices and the Symmetric Eigenvalue Problem , 2008 .