Refinement of the Method for Using Pseudo-Invariant Sites for Long Term Calibration Trending of Landsat Reflective Bands

The long term calibration history of the Landsat 5 Thematic Mapper instrument has recently been defined using a time history of desert sites in Northern Africa. This trend is based on the assumption that the reflectance of each site is approximately constant and Lambertian over time. As a result, the top of the atmosphere reflection is assumed constant when corrected for variation in solar illumination angle and earth-sun distance. While this is true to first order and provides the current best estimate and therefore the basis for all current temporal calibration, there are multiple known sources of residual error in the data. The two we believe to be most significant and addressable are bidirectional reflectance and atmospheric variation from observation to observation. This paper presents demonstrated trends in the existing data consistent with bidirectional reflectance variation that should significantly reduce errors in the trend data.

[1]  P. Slater,et al.  Absolute-radiometric calibration of Landsat-5 Thematic Mapper and the proposed calibration of the Advanced Spaceborne Thermal Emission and Reflection Radiometer , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[2]  Ananth Ranganathan,et al.  The Levenberg-Marquardt Algorithm , 2004 .

[3]  Peter Scarth,et al.  Calibration of multiple Landsat sensors based on pseudo-invariant target sites in Western Queensland, Australia , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[4]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[5]  Brian L. Markham,et al.  Evaluation of the Landsat-5 TM radiometric calibration history using desert test sites , 2006, SPIE Remote Sensing.

[6]  Gyanesh Chander,et al.  Updated Radiometric Calibration for the Landsat-5 Thematic Mapper Reflective Bands , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Keith S. Krause,et al.  QuickBird relative radiometric performance and on-orbit long term trending , 2006, SPIE Optics + Photonics.

[8]  Carol J. Bruegge,et al.  Vicarious calibration experiment in support of the Multi-angle Imaging SpectroRadiometer , 2002, IEEE Trans. Geosci. Remote. Sens..

[9]  Benjamin K. Tsai,et al.  Bidirectional Reflectance Distribution Function of Rough Silicon Wafers , 2001 .

[10]  Jean-Louis Roujean,et al.  Sun and view angle corrections on reflectances derived from NOAA/AVHRR data , 1994, IEEE Trans. Geosci. Remote. Sens..

[11]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[12]  Xiaoxiong Xiong,et al.  An overview of MODIS on-orbit calibration and instrument performance , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[13]  Gyanesh Chander,et al.  Revised Landsat-5 Thematic Mapper Radiometric Calibration , 2007, IEEE Geoscience and Remote Sensing Letters.

[14]  Gyanesh Chander,et al.  Landsat-5 TM reflective-band absolute radiometric calibration , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[15]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[16]  Nianzeng Che,et al.  Terra MODIS on-orbit spectral characterization and performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[17]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[18]  P. Bicheron,et al.  Bidirectional reflectance distribution function signatures of major biomes observed from space , 2000 .

[19]  Dave Smith,et al.  Calibration monitoring of the visible and near-infrared channels of the along-track scanning radiometer-2 by use of stable terrestrial sites. , 2002, Applied optics.

[20]  W. D. Ray Applied Linear Statistical Models (3rd Edition) , 1991 .

[21]  Dennis L. Helder,et al.  Landsat-5 TM and Landsat-7 ETM+ absolute radiometric calibration using the reflectance-based method , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[23]  Bryan A. Franz,et al.  New results of ground target based calibration of MOS on IRS , 2002, SPIE Optics + Photonics.

[24]  Aisheng Wu,et al.  Monitoring MODIS calibration stability of visible and near-IR bands from observed top-of-atmosphere BRDF-normalized reflectances over Libyan Desert and Antarctic surfaces , 2008, Optical Engineering + Applications.

[25]  M. Leroy,et al.  Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors , 1996 .

[26]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[27]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[28]  Kurtis J. Thome,et al.  Cross comparison of EO-1 sensors and other Earth resources sensors to Landsat-7 ETM+ using Railroad Valley Playa , 2003, IEEE Trans. Geosci. Remote. Sens..

[29]  O. Hagolle,et al.  Relative and multitemporal calibration of AVHRR, SeaWiFS, and VEGETATION using POLDER characterization of desert sites , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[30]  Brian L. Markham,et al.  Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 Image Assessment System , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[31]  Nianzeng Che,et al.  Terra MODIS on-orbit spatial characterization and performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.