Low-dose dual-source CT angiography with iterative reconstruction for coronary artery stent evaluation.

OBJECTIVES The purpose of this study was to evaluate the image quality and diagnostic accuracy of very low-dose, dual-source computed tomography (DSCT) angiography for the evaluation of coronary stents. BACKGROUND Iterative reconstruction (IR) leads to substantial reduction of image noise and hence permits the use of very low-dose data acquisition protocols in coronary computed tomography angiography. METHODS Fifty symptomatic patients with 87 coronary stents (diameter 3.0 ± 0.4 mm) underwent coronary DSCT angiography (heart rate, 60 ± 6 beats/min; prospectively electrocardiography-triggered axial acquisition; 80 kV, 165 mA, 2 × 128 × 0.6-mm collimation; 60 ml of contrast at 6 ml/s) before invasive coronary angiography. DSCT images were reconstructed using both standard filtered back projection and a raw data-based IR algorithm (SAFIRE, Siemens Healthcare, Forchheim, Germany). Subjective image quality (4-point scale from 0 [nondiagnostic] to 3 [excellent image quality]), image noise, contrast-to-noise ratio as well as the presence of in-stent stenosis >50% were independently determined by 2 observers. RESULTS The median dose-length product was 23.0 (22.0; 23.0) mGy · cm (median estimated effective dose of 0.32 [0.31; 0.32] mSv). IR led to significantly improved image quality compared with filtered back projection (image quality score, 1.8 ± 0.6 vs. 1.5 ± 0.5, p < 0.05; image noise, 70 Hounsfield units [62; 80 Hounsfield units] vs. 96 Hounsfield units [82; 113 Hounsfield units], p < 0.001; contrast-to-noise ratio, 11.0 [9.6; 12.4] vs. 8.0 [6.2; 9.3], p < 0.001). To detect significant coronary stenosis in filtered back projection reconstructions, the sensitivity, specificity, positive predictive value, and negative predictive value were 97% (32 of 33), 53% (9 of 17), 80% (32 of 40), and 90% (9 of 10) per patient, respectively; 89% (43 of 48), 79% (120 of 152), 57% (42 of 74), and 96% (121 of 126) per vessel, respectively; and 85% (12 of 14), 69% (51 of 73), 32% (11 of 34), and 96% (51 of 53) per stent, respectively. In reconstructions obtained by IR, the corresponding values were 100% (33 of 33), 65% (11 of 17), 85% (33 of 39), and 100% (11 of 11) per patient, respectively; 96% (46 of 48), 84% (129 of 152), 66% (47 of 71), and 98% (127 of 129) per vessel, respectively; and 100% (14 of 14), 75% (55 of 73), 44% (14 of 32), and 100% (55 of 55) per stent, respectively. These differences were not significant. CONCLUSIONS In selected patients, prospectively electrocardiography-triggered image acquisition with 80-kV tube voltage and low current in combination with IR permits the evaluation of patients with implanted coronary artery stents with reasonable diagnostic accuracy at very low radiation exposure.

[1]  James K Min,et al.  Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. , 2010, AJR. American journal of roentgenology.

[2]  Bernhard Bischoff,et al.  Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. , 2009, JACC. Cardiovascular imaging.

[3]  J. Min,et al.  High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. , 2009, Journal of cardiovascular computed tomography.

[4]  N. Bellenger,et al.  A comparison of radiation doses between state-of-the-art multislice CT coronary angiography with iterative reconstruction, multislice CT coronary angiography with standard filtered back-projection and invasive diagnostic coronary angiography , 2010, Heart.

[5]  P J de Feyter,et al.  Dual source coronary computed tomography angiography for detecting in-stent restenosis , 2007, Heart.

[6]  W. Bautz,et al.  Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. , 2006, European heart journal.

[7]  C. Fink,et al.  Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique—comparison with traditional filtered back projection , 2011, European Radiology.

[8]  Fuminari Tatsugami,et al.  Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. , 2007, European heart journal.

[9]  E. Wenkel,et al.  Comparison of Image Quality in Contrast-enhanced Coronary-artery Visualization by Electron Beam Tomography and Retrospectively Electrocardiogram-gated Multislice Spiral Computed Tomography , 2003, Investigative radiology.

[10]  Jörg Hausleiter,et al.  Estimated radiation dose associated with cardiac CT angiography. , 2009, JAMA.

[11]  S. Abbara,et al.  Prospectively Gated Transverse Coronary CT Angiography versus Retrospectively Gated Helical Technique: Improved Image Quality and Reduced Radiation Dose , 2008 .

[12]  Udo Hoffmann,et al.  Quantitative parameters of image quality in 64-slice computed tomography angiography of the coronary arteries. , 2006, European journal of radiology.

[13]  J. Leipsic,et al.  Iterative reconstruction for coronary CT angiography: finding its way , 2012, The International Journal of Cardiovascular Imaging.

[14]  Fabian Bamberg,et al.  Noninvasive assessment of coronary in-stent restenosis by dual-source computed tomography. , 2009, The American journal of cardiology.

[15]  Jeroen J. Bax,et al.  Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. , 2007, Journal of the American College of Cardiology.

[16]  D. Andreini,et al.  Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography versus invasive coronary angiography versus intravascular ultrasound for evaluation of in-stent restenosis. , 2009, The American journal of cardiology.

[17]  S. Abbara SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT , 2012 .

[18]  S. Achenbach,et al.  Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. , 2010, European heart journal.

[19]  Scott D Flamm,et al.  Meta-analysis of diagnostic efficacy of 64-slice computed tomography in the evaluation of coronary in-stent restenosis. , 2009, The American journal of cardiology.

[20]  Jörg Hausleiter,et al.  Radiation Dose Estimates From Cardiac Multislice Computed Tomography in Daily Practice: Impact of Different Scanning Protocols on Effective Dose Estimates , 2006, Circulation.

[21]  J. Leipsic,et al.  Adaptive statistical iterative reconstruction: assessment of image noise and image quality in coronary CT angiography. , 2010, AJR. American journal of roentgenology.

[22]  C. Fink,et al.  Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. , 2011, Radiology.