Towards Ontology Reshaping for KG Generation with User-in-the-Loop: Applied to Bosch Welding

Knowledge graphs (KG) are used in a wide range of applications. The automation of KG generation is very desired due to the data volume and variety in industries. One important approach of KG generation is to map the raw data to a given KG schema, namely a domain ontology, and construct the entities and properties according to the ontology. However, the automatic generation of such ontology is demanding and existing solutions are often not satisfactory. An important challenge is a trade-off between two principles of ontology engineering: knowledge-orientation and data-orientation. The former one prescribes that an ontology should model the general knowledge of a domain, while the latter one emphasises on reflecting the data specificities to ensure good usability. We address this challenge by our method of ontology reshaping, which automates the process of converting a given domain ontology to a smaller ontology that serves as the KG schema. The domain ontology can be designed to be knowledge-oriented and the KG schema covers the data specificities. In addition, our approach allows the option of including user preferences in the loop. We demonstrate our on-going research on ontology reshaping and present an evaluation using real industrial data, with promising results.

[1]  Evgeny Kharlamov,et al.  An ontology-mediated analytics-aware approach to support monitoring and diagnostics of static and streaming data , 2019, J. Web Semant..

[2]  Dirk Walther,et al.  Towards a Practical Decision Procedure for Uniform Interpolants of EL-TBoxes - a Proof-Theoretic Approach , 2016, GCAI.

[3]  Ian Horrocks,et al.  Publishing the Norwegian Petroleum Directorate's FactPages as Semantic Web Data , 2013, SEMWEB.

[4]  Evgeny Kharlamov,et al.  PCSG: Pattern-Coverage Snippet Generation for RDF Datasets , 2021, SEMWEB.

[5]  Övünç Öztürk,et al.  Karyon: A scalable and easy to integrate ontology summarisation framework: , 2019 .

[6]  Diego Calvanese,et al.  Aggregate queries over ontologies , 2008, ONISW '08.

[7]  Baifan Zhou Machine Learning Methods for Product Quality Monitoring in Electric Resistance Welding , 2021 .

[8]  Ian Horrocks,et al.  Ontology-based end-user visual query formulation: Why, what, who, how, and which? , 2016, Universal Access in the Information Society.

[9]  Markus Reischl,et al.  Comparison of Machine Learning Approaches for Time-series-based Quality Monitoring of Resistance Spot Welding (RSW) , 2018 .

[10]  Evgeny Kharlamov,et al.  How Semantic Technologies Can Enhance Data Access at Siemens Energy , 2014, SEMWEB.

[11]  Anees Mehdi,et al.  Ontologies and Reasoning to Capture Product Complexity in Automation Industry , 2017, International Semantic Web Conference.

[12]  Evgeny Kharlamov,et al.  A Framework for Evaluating Snippet Generation for Dataset Search , 2019, SEMWEB.

[13]  Evgeny Kharlamov,et al.  Ontology Evolution Under Semantic Constraints , 2012, KR.

[14]  Zhanfang Zhao,et al.  Architecture of Knowledge Graph Construction Techniques , 2018 .

[15]  Pai Zheng,et al.  Towards Self-X cognitive manufacturing network: An industrial knowledge graph-based multi-agent reinforcement learning approach , 2021 .

[16]  Nina F. Thornhill,et al.  Improving Root Cause Analysis by Detecting and Removing Transient Changes in Oscillatory Time Series with Application to a 1,3-Butadiene Process , 2019 .

[17]  Ian Horrocks,et al.  BootOX: Practical Mapping of RDBs to OWL 2 , 2015, SEMWEB.

[18]  Evgeny Kharlamov,et al.  Scaling Usability of ML Analytics with Knowledge Graphs: Exemplified with A Bosch Welding Case , 2021, IJCKG.

[19]  Michael Cochez,et al.  Leveraging Knowledge Graph Embedding Techniques for Industry 4.0 Use Cases , 2018, ArXiv.

[20]  Boris Konev,et al.  Forgetting and Uniform Interpolation in Large-Scale Description Logic Terminologies , 2009, IJCAI.

[22]  Dirk Walther,et al.  Computing Minimal Subsumption Modules of Ontologies , 2018, GCAI.

[23]  Asunción Gómez-Pérez,et al.  The NeOn Methodology for Ontology Engineering , 2012, Ontology Engineering in a Networked World.

[24]  Evgeny Kharlamov,et al.  Towards More Usable Dataset Search: From Query Characterization to Snippet Generation , 2019, CIKM.

[25]  Gong Cheng,et al.  Entity Summarization with User Feedback , 2020, ESWC.

[26]  Patrick Koopmann,et al.  Deductive Module Extraction for Expressive Description Logics , 2020, IJCAI.

[27]  Diego Calvanese,et al.  On expansion and contraction of DL-Lite knowledge bases , 2019, J. Web Semant..

[28]  Yavor Nenov,et al.  Capturing Industrial Information Models with Ontologies and Constraints , 2016, SEMWEB.

[29]  Boris Konev,et al.  Model-theoretic inseparability and modularity of description logic ontologies , 2013, Artif. Intell..

[30]  Evgeny Kharlamov,et al.  Faceted Search over Ontology-Enhanced RDF Data , 2014, CIKM.

[31]  Steffen Staab,et al.  What Is an Ontology? , 2009, Handbook on Ontologies.

[32]  Evgeny Kharlamov,et al.  Querying industrial stream-temporal data: An ontology-based visual approach , 2017, J. Ambient Intell. Smart Environ..

[33]  Ralf Mikut,et al.  Predicting Quality of Automated Welding with Machine Learning and Semantics: A Bosch Case Study , 2020, CIKM.

[34]  Asunción Gómez-Pérez,et al.  Ontology Engineering in a Networked World , 2012, Springer Berlin Heidelberg.

[35]  Tim Pychynski,et al.  SemFE: Facilitating ML Pipeline Development with Semantics , 2020, CIKM.

[36]  Evgeny Kharlamov,et al.  Ontology-Enhanced Machine Learning: A Bosch Use Case of Welding Quality Monitoring , 2020, SEMWEB.

[37]  Evgeny Kharlamov,et al.  BANDAR: Benchmarking Snippet Generation Algorithms for (RDF) Dataset Search , 2021, IEEE Transactions on Knowledge and Data Engineering.

[38]  Ian Horrocks,et al.  Trust-Sensitive Evolution of DL-Lite Knowledge Bases , 2017, AAAI.

[39]  Evgeny Kharlamov,et al.  Ontology Based Data Access in Statoil , 2017, J. Web Semant..

[40]  Ian Horrocks,et al.  Ontology Based Access to Exploration Data at Statoil , 2015, SEMWEB.

[41]  Ian Horrocks,et al.  SemFacet: Making Hard Faceted Search Easier , 2017, CIKM.

[42]  Asunción Gómez-Pérez,et al.  Introduction: Ontology Engineering in a Networked World , 2012, Ontology Engineering in a Networked World.

[43]  Evgeny Kharlamov,et al.  Faceted search over RDF-based knowledge graphs , 2016, J. Web Semant..

[44]  Xiaohan Zou,et al.  A Survey on Application of Knowledge Graph , 2020, Journal of Physics: Conference Series.

[45]  Steffen Lamparter,et al.  Use Cases of the Industrial Knowledge Graph at Siemens , 2018, SEMWEB.

[46]  Evgeny Kharlamov,et al.  Semantic ML for Manufacturing Monitoring at Bosch , 2020, SEMWEB.

[47]  H. Kagermann Change Through Digitization—Value Creation in the Age of Industry 4.0 , 2015 .

[48]  Adrian McEwen,et al.  Designing the Internet of Things , 2013 .

[49]  Baifan Zhou,et al.  Practical methods for detecting and removing transient changes in univariate oscillatory time series , 2017 .

[50]  Evgeny Kharlamov,et al.  Semantic access to streaming and static data at Siemens , 2017, J. Web Semant..

[51]  Evgeny Kharlamov,et al.  Semantic Faceted Search with Aggregation and Recursion , 2017, SEMWEB.

[52]  Carsten Binnig,et al.  RODI: Benchmarking relational-to-ontology mapping generation quality , 2017, Semantic Web.

[53]  Heike Adel,et al.  Towards the Bosch Materials Science Knowledge Base , 2019, SEMWEB.

[54]  Dirk Walther,et al.  Zooming in on Ontologies: Minimal Modules and Best Excerpts , 2017, International Semantic Web Conference.

[55]  Ian Horrocks,et al.  OptiqueVQS: A visual query system over ontologies for industry , 2018, Semantic Web.

[56]  Dirk Walther,et al.  Computing Minimal Projection Modules for ELH^r -Terminologies , 2019, JELIA.

[57]  E. Kharlamov,et al.  SemML: Reusable ML for Condition Monitoring in Discrete Manufacturing , 2020, SEMWEB.

[58]  Evgeny Kharlamov,et al.  Entity Summarization in Knowledge Graphs: Algorithms, Evaluation, and Applications , 2020, WWW.

[59]  Peer Kröger,et al.  On event-driven knowledge graph completion in digital factories , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[60]  Mustafa Jarrar,et al.  Towards Methodological Principles for Ontology Engineering. , 2005 .

[61]  Felix Lösch,et al.  Semantic Integration of Bosch Manufacturing Data Using Virtual Knowledge Graphs , 2020, SEMWEB.