On characterization of molecular surfaces

We consider the problem of quantitative characterization of the molecular surface. We start with a set of matrices, the elements of which give interatomic separation and higher powers of the separations. Averaged row sums of individual matrices suitably normalized give molecular profiles. The problem that we consider is how to generalize this approach to 2-dimensional and 3-dimensional objects. By using a large number of random points distributed over the molecular surface or molecular volume, respectively, we arrive at matrices from which one can extract invariants that offer a good characterization of the molecular surface and the molecular volume. It is suggested that the ratio V/S, where V and S are components of the volume and surface profile for a molecule, respectively, represents a novel shape index. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 65: 1065–1076, 1997

[1]  N. Trinajstic,et al.  Information theory, distance matrix, and molecular branching , 1977 .

[2]  Arteca Scaling behavior of some molecular shape descriptors of polymer chains and protein backbones. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  L. Kier Distinguishing Atom Differences in a Molecular Graph Shape Index , 1986 .

[4]  G. Arteca,et al.  Overcrossing spectra of protein backbones: Characterization of three‐dimensional molecular shape and global structural homologies , 1993, Biopolymers.

[5]  Subhash C. Basak,et al.  Application of graph theoretical parameters in quantifying molecular similarity and structure-activity relationships , 1994, J. Chem. Inf. Comput. Sci..

[6]  Roman Kaliszan,et al.  A relationship between the retention indices on nematic and isotropic phases and the shape of polycyclic aromatic hydrocarbons , 1979 .

[7]  G. Arteca Assessment of molecular shape fluctuations along dynamic trajectories , 1993 .

[8]  Jiri Pospichal,et al.  Simulated Annealing Construction of Molecular Graphs with Required Properties , 1996, J. Chem. Inf. Comput. Sci..

[9]  Paul G. Mezey,et al.  Shape group studies of molecular similarity: Shape groups and shape graphs of molecular contour surfaces , 1988 .

[10]  Milan Randić,et al.  On characterization of the conformations of nine‐membered rings , 1995 .

[11]  loan Motoc Quantitative Comparison of the Shape of Bio-organic Molecules , 1983 .

[12]  Danail Bonchev,et al.  Topological order in molecules 1. Molecular branching revisited , 1995 .

[13]  Steven H. Bertz,et al.  Convergence, molecular complexity, and synthetic analysis , 1982 .

[14]  Lemont B. Kier,et al.  A Shape Index from Molecular Graphs , 1985 .

[15]  R. Bader,et al.  Quantum topology of molecular charge distributions. II. Molecular structure and its change , 1979 .

[16]  Steven H. Bertz,et al.  Branching in graphs and molecules , 1988, Discret. Appl. Math..

[17]  A. Hopfinger A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis , 1980 .

[18]  Peter C. Jurs,et al.  Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships , 1987 .

[19]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .

[20]  Davison Db,et al.  Editorial: Whither Computational Biology , 1994, J. Comput. Biol..

[21]  Comparison of potential energy maps and molecular shape invariance maps for two-dimensional conformational problems , 1990 .

[22]  István Lukovits Toward Reconstruction of Trees by Using Graph Invariants , 1994, J. Chem. Inf. Comput. Sci..

[23]  M. Randic,et al.  MOLECULAR PROFILES NOVEL GEOMETRY-DEPENDENT MOLECULAR DESCRIPTORS , 1995 .

[24]  Gustavo A. Arteca,et al.  Shape analysis of hydrogen‐bonded networks in solvation clusters , 1994, J. Comput. Chem..

[25]  Lemont B. Kier,et al.  The generation of molecular structures from a graph-based QSAR equation , 1993 .

[26]  Milan Randic Chemical structure—What is "she"? , 1992 .

[27]  Milan Randić,et al.  Comparative Regression Analysis. Regressions Based on a Single Descriptor , 1993 .

[28]  A. J. Duke,et al.  Quantum topology of molecular charge distributions. 1 , 1979 .

[29]  Gustavo A. Arteca A detailed shape characterization of regular polypeptide conformations , 1995 .

[30]  N. Trinajstic Chemical Graph Theory , 1992 .

[31]  Paul G. Mezey,et al.  Similarity analysis in two and three dimensions using lattice animals and polycubes , 1992 .

[32]  L. Kier Shape Indexes of Orders One and Three from Molecular Graphs , 1986 .

[33]  Igor I. Baskin,et al.  Inverse problem in QSAR/QSPR studies for the case of topological indexes characterizing molecular shape (Kier indices) , 1993, J. Chem. Inf. Comput. Sci..

[34]  P. Mezey,et al.  A method for the characterization of molecular conformations , 1987 .

[35]  M. Randic,et al.  QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP. BOILING POINTS OF PLANAR BENZENOIDS , 1996 .

[36]  R. Bader,et al.  Quantum Theory of Atoms in Molecules–Dalton Revisited , 1981 .

[37]  Shape description of conformationally flexible molecules: Application to two‐dimensional conformational problems , 1988 .

[38]  Terry R. Stouch,et al.  A simple method for the representation, quantification, and comparison of the volumes and shapes of chemical compounds , 1986, J. Chem. Inf. Comput. Sci..

[39]  Milan Randić,et al.  Molecular bonding profiles , 1996 .

[40]  L. Kier Indexes of molecular shape from chemical graphs , 1987, Medicinal research reviews.

[41]  Steven H. Bertz,et al.  The first general index of molecular complexity , 1981 .

[42]  P. Wieland,et al.  Steroide und Sexualhormone. (90. Mitteilung). Über die Herstellung der beiden moschusartig riechenden Δ16-Androstenole-(3) und verwandter Verbindungen , 1944 .

[43]  R. Bader,et al.  Quantum topology. IV. Relation between the topological and energetic stabilities of molecular structures , 1981 .

[44]  Milan Randic,et al.  Molecular Shape Profiles , 1995, J. Chem. Inf. Comput. Sci..