Privacy-Preserving and Publicly Verifiable Protocol for Outsourcing Polynomials Evaluation to a Malicious Cloud

Ascloudcomputingprovidesaffordableandscalablecomputational resources,delegatingheavy computingtaskstothecloudserviceprovidersisappealingtoindividualsandcompanies.Among differenttypesofspecificcomputations,thepolynomialevaluationisanimportantoneduetoits wideusageinengineeringandscientificfields.Cloudserviceprovidersmaynotbetrusted,thus,the validityandtheprivacyofsuchcomputationshouldbeguaranteed.Inthisarticle,theauthorspresent aprotocolforpubliclyverifiabledelegationsofhighdegreepolynomials.Comparedwiththeexisting solutions,itensurestheprivacyofoutsourcedfunctionsandactualresults.Andtheprotocolsatisfies thepropertyofblindverifiabilitysuchthattheresultscanbepubliclyverifiedwithoutlearningthe value.Theprotocolalsoimprovesinefficiency. KEywORDS Blind Verification, Cloud Computing, Large Polynomials, Privacy, Publicly Verifiable

[1]  Yihua Zhang,et al.  Secure and Verifiable Outsourcing of Large-Scale Biometric Computations , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[2]  Tao Jiang,et al.  New publicly verifiable computation for batch matrix multiplication , 2019, Inf. Sci..

[3]  Fucai Zhou,et al.  Secure Collaborative Publicly Verifiable Computation , 2017, IEEE Access.

[4]  Tingwen Huang,et al.  Cloud Computing Service: The Caseof Large Matrix Determinant Computation , 2015, IEEE Transactions on Services Computing.

[5]  Haiyan Zhang,et al.  Verifiable Delegation of Polynomials , 2016, Int. J. Netw. Secur..

[6]  Craig Gentry,et al.  Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers , 2010, CRYPTO.

[7]  Dario Fiore,et al.  Practical Homomorphic MACs for Arithmetic Circuits , 2013, IACR Cryptol. ePrint Arch..

[8]  Wei Song,et al.  Publicly Verifiable Computation of Polynomials Over Outsourced Data With Multiple Sources , 2017, IEEE Transactions on Information Forensics and Security.

[9]  Elaine Shi,et al.  Signatures of Correct Computation , 2013, TCC.

[10]  Xu An Wang,et al.  Publicly Verifiable 1-norm and 2-norm Operations over Outsourced Data Stream Under Single-Key Setting , 2018, EIDWT.

[11]  Reihaneh Safavi-Naini,et al.  Verifiable Delegation of Computations with Storage-Verification Trade-off , 2014, ESORICS.

[12]  Rosario Gennaro,et al.  Publicly verifiable delegation of large polynomials and matrix computations, with applications , 2012, IACR Cryptol. ePrint Arch..

[13]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[14]  Lifeng Zhou,et al.  Outsourcing Eigen-Decomposition and Singular Value Decomposition of Large Matrix to a Public Cloud , 2016, IEEE Access.

[15]  Michael Backes,et al.  Verifiable delegation of computation on outsourced data , 2013, CCS.

[16]  Ivan Damgård,et al.  Linear zero-knowledge—a note on efficient zero-knowledge proofs and arguments , 1997, STOC '97.

[17]  Lifei Wei,et al.  Provably Secure Dual-Mode Publicly Verifiable Computation Protocol in Marine Wireless Sensor Networks , 2017, WASA.

[18]  Tao Jiang,et al.  New Publicly Verifiable Computation for Batch Matrix Multiplication , 2017, GPC.

[19]  Yevgeniy Vahlis,et al.  Verifiable Delegation of Computation over Large Datasets , 2011, IACR Cryptol. ePrint Arch..

[20]  Xing Hu,et al.  Secure outsourced computation of the characteristic polynomial and eigenvalues of matrix , 2015, Journal of Cloud Computing.

[21]  Jiankun Hu,et al.  Confidentiality-Preserving Publicly Verifiable Computation , 2017, Int. J. Found. Comput. Sci..