Refined instrumental variable methods for identification of LPV Box-Jenkins models

The identification of linear parameter-varying systems in an input-output setting is investigated, focusing on the case when the noise part of the data generating system is an additive colored noise. In the Box-Jenkins and output-error cases, it is shown that the currently available linear regression and instrumental variable methods from the literature are far from being optimal in terms of bias and variance of the estimates. To overcome the underlying problems, a refined instrumental variable method is introduced. The proposed approach is compared to the existing methods via a representative simulation example.

[1]  Psc Peter Heuberger,et al.  An LPV identification Framework Based on Orthonormal Basis Functions , 2009 .

[2]  Bassam Bamieh,et al.  Identification for a general class of LPV Models , 2000 .

[3]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[4]  J. Ramos,et al.  Identification of linear parameter varying systems using an iterative deterministic-stochastic subspace approach , 2007, 2007 European Control Conference (ECC).

[5]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[6]  Michel Verhaegen,et al.  Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..

[7]  Lennart Ljung,et al.  Experiments with Identification of Continuous Time Models , 2009 .

[8]  M. Lovera,et al.  Identification for gain-scheduling: a balanced subspace approach , 2007, 2007 American Control Conference.

[9]  Luigi del Re,et al.  ON PERSISTENT EXCITATION FOR PARAMETER ESTIMATION OF QUASI-LPV SYSTEMS AND ITS APPLICATION IN MODELING OF DIESEL ENGINE TORQUE , 2006 .

[10]  Petre Stoica,et al.  MIMO system identification: state-space and subspace approximations versus transfer function and instrumental variables , 2000, IEEE Trans. Signal Process..

[11]  P.M.J. Van den Hof,et al.  Modeling and Identification of Linear Parameter-Varying Systems, an Orthonormal Basis Function Approach , 2004 .

[12]  L. Giarréa,et al.  LPV model identification for gain scheduling control : An application to rotating stall and surge control problem , 2005 .

[13]  P. Young,et al.  Refined Instrumental Variable Identification of Continuous-time Hybrid Box-Jenkins Models , 2008 .

[14]  Bassam Bamieh,et al.  LPV model identification for gain scheduling control: An application to rotating stall and surge control problem , 2006 .

[15]  Peter C. Young,et al.  Refined Instrumental Variable methods for closed-loop system identification , 2009 .

[16]  R. Th Modeling and identification of linear parameter-varying systems: an orthonormal basis function Approach , 2008 .

[17]  P. Young Unified estimation of discrete and continuous-time transfer function models , 2008 .

[18]  Hong Wang,et al.  Recursive estimation and time-series analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[19]  Peter C. Young,et al.  Recursive Estimation and Time Series Analysis , 1984 .

[20]  Alireza Karimi,et al.  On the Consistency of Certain Identification Methods for Linear Parameter Varying Systems , 2008 .

[21]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[22]  Alexandre S. Bazanella,et al.  Informative data: How to get just sufficiently rich? , 2008, 2008 47th IEEE Conference on Decision and Control.

[23]  Venkataramanan Balakrishnan,et al.  System identification: theory for the user (second edition): Lennart Ljung; Prentice-Hall, Englewood Cliffs, NJ, 1999, ISBN 0-13-656695-2 , 2002, Autom..

[24]  Hugues Garnier,et al.  Identification of continuous-time systems: direct or indirect? , 2004 .

[25]  Marion Gilson,et al.  Instrumental variable methods for closed-loop system identification , 2005, Autom..

[26]  Peter C. Young,et al.  Refined instrumental variable methods for identification of Hammerstein continuous-time Box-Jenkins models , 2008, 2008 47th IEEE Conference on Decision and Control.

[27]  Liuping Wang,et al.  Identification of Continuous-time Models from Sampled Data , 2008 .

[28]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[29]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).