Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

Abstract The paper provides details on the structure and implementation of the Computational Materials Program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA ’s broad mission objectives. Introduction “I have not failed. I’ve just found 10,000 ways that don’t work.” -Thomas Alva Edison (1 847-1 93 1) Each distinct age in the development of humankind has been associated with advances in materials technology. Historians have linked key technological and societal events with the materials technology that was prevalent during the “stone age,” “bronze age,” and

[1]  Wade Babcock,et al.  Computational materials science , 2004 .

[2]  M. Klein,et al.  Computer simulation studies of biomembranes using a coarse grain model , 2002 .

[3]  Monte Carlo Simulation of Endlinking Oligomers , 1998 .

[4]  S. E. Luria,et al.  Human Genome Program , 1989, Science.

[5]  J. Hinkley,et al.  Molecular Simulations of the Imidization of Adsorbed Polyamic Acid , 2000 .

[6]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[7]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[8]  F. Yuan,et al.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) , 1999 .

[9]  Robert C. Cammarata,et al.  Nanomaterials : synthesis, properties, and applications , 1996 .

[10]  F. Crick,et al.  Molecular structure of nucleic acids , 2004, JAMA.

[11]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[12]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[13]  Wolfgang G. Knauss,et al.  Perspectives in experimental solid mechanics , 2000 .

[14]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[15]  R. Feynman There's plenty of room at the bottom , 1999 .

[16]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[17]  J. Haile Molecular Dynamics Simulation , 1992 .

[18]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[19]  Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles , 2002 .

[20]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[21]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[22]  D. C. Drucker,et al.  Thoughts on the present and future interrelation of theoretical and experimental mechanics , 1968 .

[23]  Jeffrey A. Hinkley,et al.  Crystallization of Stretched Polyimides: A Structure-Property Study , 2002 .

[24]  小林 昭一 "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .

[25]  J. Hinkley,et al.  Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide , 1999 .

[26]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[27]  Kurt Kremer,et al.  Multiscale Problems in Polymer Science: Simulation Approaches , 2001 .

[28]  G. E. Mase,et al.  Schaum's outline of theory and problems of continuum mechanics , 1970 .

[29]  Jeffrey A. Hinkley,et al.  Molecular Modeling of the Poling of Piezoelectric Polyimides , 1999 .

[30]  Henry T. Y. Yang Finite Element Structural Analysis , 1985 .

[31]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.