Simple and Precise Widenings for H-Polyhedra

While the definition of the revised widening for polyhedra is defined in terms of inequalities, most implementations use the double description method as a means to an efficient implementation. We show how standard widening can be implemented in a simple and efficient way using a normalized H-representation (constraint-only) which has become popular in recent approximations to polyhedral analysis. We then detail a novel heuristic for this representation that is tuned to capture linear transformations of the state space while ensuring quick convergence for non-linear transformations for which no precise linear invariants exist.

[1]  Patrick Cousot,et al.  A static analyzer for large safety-critical software , 2003, PLDI '03.

[2]  Patrick Cousot,et al.  A Sound Floating-Point Polyhedra Abstract Domain , 2008, APLAS.

[3]  Nicolas Halbwachs,et al.  Automatic discovery of linear restraints among variables of a program , 1978, POPL.

[4]  Henny B. Sipma,et al.  Efficient Strongly Relational Polyhedral Analysis , 2006, VMCAI.

[5]  Nicolas Halbwachs,et al.  Verification of Real-Time Systems using Linear Relation Analysis , 1997, Formal Methods Syst. Des..

[6]  Thomas W. Reps,et al.  Lookahead Widening , 2006, CAV.

[7]  Ji Wang,et al.  An Abstract Domain to Discover Interval Linear Equalities , 2010, VMCAI.

[8]  Andy King,et al.  Widening Polyhedra with Landmarks , 2006, APLAS.

[9]  Nicolas Halbwachs Détermination automatique de relations linéaires vérifiées par les variables d'un programme , 1979 .

[10]  Brian Campbell,et al.  Amortised Memory Analysis Using the Depth of Data Structures , 2009, ESOP.

[11]  Jean-Pierre Talpin,et al.  Polyhedral Analysis for Synchronous Languages , 1999, SAS.

[12]  Nicolas Halbwachs,et al.  Verification of Linear Hybrid Systems by Means of Convex Approximations , 1994, SAS.

[13]  Jacob M. Howe,et al.  Two Variables per Linear Inequality as an Abstract Domain , 2002, LOPSTR.

[14]  Marvin V. Zelkowitz,et al.  Programming Languages: Design and Implementation , 1975 .

[15]  Mohamed Nassim Seghir,et al.  A Lightweight Approach for Loop Summarization , 2011, ATVA.

[16]  Gilles Dowek,et al.  Principles of programming languages , 1981, Prentice Hall International Series in Computer Science.

[17]  Jacob M. Howe,et al.  Logahedra: A New Weakly Relational Domain , 2009, ATVA.

[18]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[19]  Roberto Bagnara,et al.  Precise widening operators for convex polyhedra , 2003, Sci. Comput. Program..

[20]  Patricia Mary Benoy Polyhedral domains for abstract interpretation in logic programming , 2002 .

[21]  Andy King,et al.  Exploiting Sparsity in Polyhedral Analysis , 2005, SAS.

[22]  Frédéric Mesnard,et al.  cTI: A constraint-based termination inference tool for ISO-Prolog , 2005, Theory Pract. Log. Program..

[23]  Antoine Miné,et al.  The octagon abstract domain , 2001, High. Order Symb. Comput..

[24]  Nicolas Halbwachs,et al.  Combining Widening and Acceleration in Linear Relation Analysis , 2006, SAS.

[25]  Pascal Van Hentenryck,et al.  Redundancy elimination with a lexicographic solved form , 2005, Annals of Mathematics and Artificial Intelligence.

[26]  Antoine Mid The Octagon Abstract Domain , 2001 .

[27]  Nicolas Halbwachs,et al.  Delay Analysis in Synchronous Programs , 1993, CAV.