Markov Chain Monte Carlo Parameter Estimation of the ODE Compartmental Cell Growth Model
暂无分享,去创建一个
[1] Heikki Haario,et al. Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection , 2012 .
[2] Fabian J. Theis,et al. Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems , 2017, BMC Systems Biology.
[3] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[4] Jan Hasenauer,et al. Analysis of CFSE time-series data using division-, age- and label-structured population models , 2016, Bioinform..
[5] D. Roose,et al. Computational analysis of CFSE proliferation assay , 2006, Journal of mathematical biology.
[6] David J. Klinke,et al. An empirical Bayesian approach for model-based inference of cellular signaling networks , 2009, BMC Bioinformatics.
[7] Harvey Thomas Banks,et al. Comparison of Frequentist and Bayesian Confidence Analysis Methods on a Viscoelastic Stenosis Model , 2013, SIAM/ASA J. Uncertain. Quantification.
[8] Robert Tibshirani,et al. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .
[9] Fabian J Theis,et al. High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. , 2013, Mathematical biosciences.
[10] Francisco J. Samaniego,et al. A Comparison of the Bayesian and Frequentist Approaches to Estimation , 2010 .
[11] Stephen P. Brooks,et al. Assessing Convergence of Markov Chain Monte Carlo Algorithms , 2007 .
[12] S. Moolgavkar,et al. A Method for Computing Profile-Likelihood- Based Confidence Intervals , 1988 .
[13] Athanasius F. M. Marée,et al. Small variations in multiple parameters account for wide variations in HIV–1 set–points: a novel modelling approach , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[14] T. Brubaker,et al. Nonlinear Parameter Estimation , 1979 .
[15] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .