Markov Chain Monte Carlo Parameter Estimation of the ODE Compartmental Cell Growth Model

[1]  Heikki Haario,et al.  Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection , 2012 .

[2]  Fabian J. Theis,et al.  Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems , 2017, BMC Systems Biology.

[3]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[4]  Jan Hasenauer,et al.  Analysis of CFSE time-series data using division-, age- and label-structured population models , 2016, Bioinform..

[5]  D. Roose,et al.  Computational analysis of CFSE proliferation assay , 2006, Journal of mathematical biology.

[6]  David J. Klinke,et al.  An empirical Bayesian approach for model-based inference of cellular signaling networks , 2009, BMC Bioinformatics.

[7]  Harvey Thomas Banks,et al.  Comparison of Frequentist and Bayesian Confidence Analysis Methods on a Viscoelastic Stenosis Model , 2013, SIAM/ASA J. Uncertain. Quantification.

[8]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[9]  Fabian J Theis,et al.  High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. , 2013, Mathematical biosciences.

[10]  Francisco J. Samaniego,et al.  A Comparison of the Bayesian and Frequentist Approaches to Estimation , 2010 .

[11]  Stephen P. Brooks,et al.  Assessing Convergence of Markov Chain Monte Carlo Algorithms , 2007 .

[12]  S. Moolgavkar,et al.  A Method for Computing Profile-Likelihood- Based Confidence Intervals , 1988 .

[13]  Athanasius F. M. Marée,et al.  Small variations in multiple parameters account for wide variations in HIV–1 set–points: a novel modelling approach , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[15]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .