An Introduction to Monte Carlo Methods for Bayesian Data Analysis

Often it is natural to describe a signal processing or dynamical modeling problem in terms of probability distributions, and in particular tin Bayesian terms, where the unknown parameters are taken to be random variables and their distributions are updated by applying Bayes’ theorem to gave the distributions of the parameters conditional on the data. In the past, it was not possible to handle many non-trivial problems in this way because the distributions seldom took tractable forms. Considerable progress has been made in recent years in applying Monte Carla methods to overcome this, and in this chapter we describe some of the new results that have made a full Bayesian approach to signal processing tractable as well as powerful.

[1]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[2]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[3]  Arnaud Doucet,et al.  Stochastic sampling algorithms for state estimation of jump Markov linear systems , 2000, IEEE Trans. Autom. Control..

[4]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[5]  Christophe Andrieu,et al.  A Bayesian approach to harmonic retrieval with clipped data , 1999, Signal Process..

[6]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[7]  Patrick Duvaut,et al.  Bayesian estimation of state-space models applied to deconvolution of Bernoulli - Gaussian processes , 1997, Signal Process..

[8]  Christophe Andrieu,et al.  Simulated annealing for maximum a Posteriori parameter estimation of hidden Markov models , 2000, IEEE Trans. Inf. Theory.

[9]  Eric Moulines,et al.  Simulation-based methods for blind maximum-likelihood filter identification , 1999, Signal Process..

[10]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[11]  Rong Chen,et al.  Simultaneous wavelet estimation and deconvolution of reflection seismic signals , 1996, IEEE Trans. Geosci. Remote. Sens..

[12]  Christophe Andrieu,et al.  Robust Bayesian spectral analysis via MCMC sampling , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[13]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[14]  J. Berger,et al.  Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence , 1987 .

[15]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[16]  H. Haario,et al.  Simulated annealing process in general state space , 1991, Advances in Applied Probability.

[17]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[18]  L. A. Breyer,et al.  Convergence of simulated annealing using Foster-Lyapunov criteria , 2001, Journal of Applied Probability.

[19]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[20]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[21]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[22]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[23]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[24]  N. Shephard,et al.  The simulation smoother for time series models , 1995 .

[25]  Christophe Andrieu,et al.  Iterative algorithms for optimal state estimation of jump Markov linear systems , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[26]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[27]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[28]  Shun-ichi Amari,et al.  Statistical analysis of learning dynamics , 1999, Signal Process..

[29]  J. Mendel,et al.  Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing , 1990 .

[30]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Rong Chen,et al.  Blind restoration of linearly degraded discrete signals by Gibbs sampling , 1995, IEEE Trans. Signal Process..

[32]  Siddhartha Chib,et al.  Markov Chain Monte Carlo Simulation Methods in Econometrics , 1996, Econometric Theory.

[33]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[34]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[35]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[36]  D. Spiegelhalter,et al.  Bayes Factors for Linear and Log‐Linear Models with Vague Prior Information , 1982 .

[37]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[38]  Christophe Andrieu,et al.  Efficient stochastic maximum a posteriori estimation for harmonic signals , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[39]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[40]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[41]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[42]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[43]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[44]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[45]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[46]  K OrJ Numerical Bayesian methods applied to signal processing , 1996 .

[47]  C. Robert Discretization and Mcmc Convergence Assessment , 1998 .

[48]  M. Tanner Tools for statistical inference: methods for the exploration of posterior distributions and likeliho , 1994 .

[49]  D B Rubin,et al.  Markov chain Monte Carlo methods in biostatistics , 1996, Statistical methods in medical research.

[50]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[51]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[52]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..