Epitaxy: Programmable Atom Equivalents

[1]  Christopher B. Murray,et al.  Exploiting the colloidal nanocrystal library to construct electronic devices , 2016, Science.

[2]  Andrew J. Senesi,et al.  Small Angle X-ray Scattering for Nanoparticle Research. , 2016, Chemical reviews.

[3]  K. A. Brown,et al.  Modulating the Bond Strength of DNA-Nanoparticle Superlattices. , 2016, ACS nano.

[4]  Matthew N. O’Brien,et al.  Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. , 2015, Nature materials.

[5]  C. Mirkin,et al.  Duplex-selective ruthenium-based DNA intercalators. , 2015, Chemistry.

[6]  C. Mirkin,et al.  DNA-mediated engineering of multicomponent enzyme crystals , 2015, Proceedings of the National Academy of Sciences.

[7]  Suchetan Pal,et al.  Dynamic tuning of DNA-nanoparticle superlattices by molecular intercalation of double helix. , 2015, Journal of the American Chemical Society.

[8]  D. Talapin,et al.  Soft epitaxy of nanocrystal superlattices , 2014, Nature Communications.

[9]  Chad A Mirkin,et al.  Epitaxial growth of DNA-assembled nanoparticle superlattices on patterned substrates. , 2013, Nano letters.

[10]  K. Yager,et al.  A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. , 2013, Nature nanotechnology.

[11]  Chad A Mirkin,et al.  A General Approach to DNA- Programmable Atom Equivalents* , 2020, Spherical Nucleic Acids.

[12]  C. Mirkin,et al.  Transitioning DNA‐Engineered Nanoparticle Superlattices from Solution to the Solid State , 2012, Advanced materials.

[13]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[14]  Stefano Cabrini,et al.  DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays. , 2010, ACS nano.

[15]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[16]  Chad A Mirkin,et al.  Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. , 2007, Nano letters.

[17]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[18]  D. Evanoff,et al.  Synthesis and optical properties of silver nanoparticles and arrays. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  P. Jönsson Superparamagnetism and Spin Glass Dynamics of Interacting Magnetic Nanoparticle Systems , 2003 .

[20]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[21]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[22]  George C Schatz,et al.  What controls the melting properties of DNA-linked gold nanoparticle assemblies? , 2000, Journal of the American Chemical Society.

[23]  Zhang,et al.  Atomistic Processes in the Early Stages of Thin-Film Growth , 1997, Science.

[24]  J. Venables,et al.  Nucleation and growth of thin films , 1984 .

[25]  N. Kotov,et al.  Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films , 1995 .