Integrating laboratory experiments and biogeographic modelling approaches to understand sensitivity to ocean warming in rare and common marine annelids

[1]  M. Araújo,et al.  The evolution of critical thermal limits of life on Earth , 2021, Nature Communications.

[2]  P. Calosi,et al.  Within- and trans-generational responses to combined global changes are highly divergent in two congeneric species of marine annelids , 2020 .

[3]  G. Reygondeau,et al.  Towards a global understanding of the drivers of marine and terrestrial biodiversity , 2020, PloS one.

[4]  R. Wilson,et al.  An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment , 2019, Journal of Comparative Physiology B.

[5]  P. Calosi,et al.  Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data. , 2019, Annual review of marine science.

[6]  N. Zimmermann,et al.  Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates , 2018, Ecography.

[7]  Rebecca L. Selden,et al.  Projecting shifts in thermal habitat for 686 species on the North American continental shelf , 2018, PloS one.

[8]  G. Edgar,et al.  Thermal limits to the geographic distributions of shallow-water marine species , 2017, Nature Ecology & Evolution.

[9]  Philippa C. Griffin,et al.  Testing the niche-breadth-range-size hypothesis: habitat specialization vs. performance in Australian alpine daisies. , 2017, Ecology.

[10]  S. Taboada,et al.  Cryptic species and colonization processes in Ophryotrocha (Annelida, Dorvilleidae) inhabiting vertebrate remains in the shallow‐water Mediterranean , 2017 .

[11]  K. Aubry,et al.  The importance of data quality for generating reliable distribution models for rare, elusive, and cryptic species , 2017, PloS one.

[12]  Nathan J B Kraft,et al.  Functional Rarity: The Ecology of Outliers. , 2017, Trends in ecology & evolution.

[13]  G. Rilov Multi-species collapses at the warm edge of a warming sea , 2016, Scientific Reports.

[14]  Yun‐wei Dong,et al.  The importance of thermal history: costs and benefits of heat exposure in a tropical, rocky shore oyster , 2016, Journal of Experimental Biology.

[15]  M. Peck,et al.  Projecting effects of climate change on marine systems: is the mean all that matters? , 2016, Proceedings of the Royal Society B: Biological Sciences.

[16]  J. Stillman,et al.  Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming , 2015, Proceedings of the Royal Society B: Biological Sciences.

[17]  P. Calosi,et al.  Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming , 2015, Global change biology.

[18]  R. Simonini,et al.  Trans-generational plasticity in physiological thermal tolerance is modulated by maternal pre-reproductive environment in the polychaete Ophryotrocha labronica , 2014, Journal of Experimental Biology.

[19]  Robert K. Colwell,et al.  Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation , 2014, Proceedings of the National Academy of Sciences.

[20]  Gabriel Reygondeau,et al.  Dynamic biogeochemical provinces in the global ocean , 2013 .

[21]  S. Pincebourde,et al.  Microclimatic challenges in global change biology , 2013, Global change biology.

[22]  R. Slatyer,et al.  Niche breadth predicts geographical range size: a general ecological pattern. , 2013, Ecology letters.

[23]  P. Calosi,et al.  Life-history and thermal tolerance traits display different thermal plasticities and relationships with temperature in the marine polychaete Ophryotrocha labronica La Greca and Bacci (Dorvilleidae) , 2012 .

[24]  Carl Simpson,et al.  Long-term differences in extinction risk among the seven forms of rarity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[25]  J. Lobo,et al.  Assessing the Congruence of Thermal Niche Estimations Derived from Distribution and Physiological Data. A Test Using Diving Beetles , 2012, PloS one.

[26]  Nicholas K. Dulvy,et al.  Thermal tolerance and the global redistribution of animals , 2012 .

[27]  W. Godsoe,et al.  How do species interactions affect species distribution models , 2012 .

[28]  David T. Bilton,et al.  Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae) , 2012 .

[29]  Ben Scott,et al.  Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool , 2011, ZooKeys.

[30]  P. Calosi,et al.  Physiological Correlates of Geographic Range in Animals , 2011 .

[31]  P. Schulte,et al.  Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. , 2011, Integrative and comparative biology.

[32]  N. Dulvy,et al.  Global analysis of thermal tolerance and latitude in ectotherms , 2011, Proceedings of the Royal Society B: Biological Sciences.

[33]  R. Simonini,et al.  Life-history and demographic spatial variation in Mediterranean populations of the opportunistic polychaete Ophryotrocha labronica (Polychaeta, Dorvilleidae) , 2011 .

[34]  W. Landman Climate change 2007: the physical science basis , 2010 .

[35]  S. Somot,et al.  The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats , 2010, PloS one.

[36]  L. Tomanek Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs , 2010, Journal of Experimental Biology.

[37]  J. Lobo,et al.  The effect of prevalence and its interaction with sample size on the reliability of species distribution models , 2009 .

[38]  G. Beaugrand,et al.  Physiology, Ecological Niches and Species Distribution , 2009, Ecosystems.

[39]  J. Sarmiento,et al.  Projecting global marine biodiversity impacts under climate change scenarios , 2009 .

[40]  M. Kearney,et al.  Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. , 2009, Ecology letters.

[41]  K. Gaston,et al.  The sizes of species’ geographic ranges , 2009 .

[42]  Paul R. Martin,et al.  Impacts of climate warming on terrestrial ectotherms across latitude , 2008, Proceedings of the National Academy of Sciences.

[43]  K. Benkendorff,et al.  Multiple measures are necessary to assess rarity in macro-molluscs: a case study from southeastern Australia , 2008, Biodiversity and Conservation.

[44]  Piero Calosi,et al.  Thermal tolerance, acclimatory capacity and vulnerability to global climate change , 2008, Biology Letters.

[45]  T. Piersma,et al.  Thermal tolerance ranges and climate variability: A comparison between bivalves from differing climates , 2007 .

[46]  David T. Bilton,et al.  Thermal tolerance and geographical range size in the Agabus brunneus group of European diving beetles (Coleoptera: Dytiscidae) , 2007 .

[47]  Rainer Knust,et al.  Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance , 2007, Science.

[48]  R. Simonini,et al.  The seasonal dynamics of six species of Dorvilleidae (Polychaeta) in the harbour of La Spezia (Italy) , 2005 .

[49]  Thom Nickell,et al.  Recovery of sediments after cessation of marine fish farm production , 2004 .

[50]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[51]  G. Eckert,et al.  DISPERSAL POTENTIAL OF MARINE INVERTEBRATES IN DIVERSE HABITATS , 2003 .

[52]  K. Gaston,et al.  The relationship between range size and niche breadth : a test using five species of Gammarus (Amphipoda) , 2001 .

[53]  H. Pulliam On the relationship between niche and distribution , 2000 .

[54]  M. Chapman Are there adequate data to assess how well theories of rarity apply to marine invertebrates? , 1999, Biodiversity & Conservation.

[55]  Kevin J. Gaston,et al.  The Biology of Rarity: Causes and Consequences of Rare: Common Differences , 1997 .

[56]  V. H. Hutchison,et al.  The critical thermal maximum: history and critique , 1997 .

[57]  G. C. Stevens The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.

[58]  J. Grimes The Biological Aspects of Rare Plant Conservation , 1982 .

[59]  H. Pereira,et al.  Range size predicts the risk of local extinction from habitat loss , 2019, Global Ecology and Biogeography.

[60]  William W. L. Cheung,et al.  Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas , 2015 .

[61]  S. Votier,et al.  What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). , 2010, The Journal of animal ecology.

[62]  R. Simonini,et al.  DIVERSITY, HABITAT AFFINITIES AND DIET OF OPHRYOTROCHA SPECIES (POLYCHAETA, DORVILLEIDAE) LIVING IN MEDITERRANEAN HARBOUR HABITATS , 2010 .

[63]  D. Prevedelli,et al.  DISTRIBUTION OF THE GENUS OPHRYOTROCHA (POLYCHAETA) IN ITALY: NEW RECORDS AND COMMENTS ON THE BIOGEOGRAPHY OF MEDITERRANEAN SPECIES , 2009 .

[64]  J. Emlen,et al.  ON THE RELATIONSHIP BETWEEN ABUNDANCE AND DISTRIBUTION OF SPECIES , 2008 .

[65]  Martin G. Raphael,et al.  Conservation of rare or little-known species : biological, social, and economic considerations , 2007 .

[66]  Curtis H. Flather,et al.  Species rarity: definition, causes, and classification , 2007 .

[67]  M. Lecha,et al.  [The importance of data]. , 2004, Nutricion hospitalaria.

[68]  A. Giorgetti,et al.  MEDAR/MEDATLAS 2002: A Mediterranean and Black Sea database for operational oceanography , 2003 .