Dimension-dependent bounds for Gröbner bases of polynomial ideals
暂无分享,去创建一个
[1] Joachim Schmid,et al. On the affine Bezout inequality , 1995 .
[2] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[3] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[4] Thomas Dubé,et al. The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..
[5] Zbigniew Jelonek,et al. On the effective Nullstellensatz , 2005 .
[6] Ernst W. Mayr,et al. Exponential space computation of Gröbner bases , 1996, ISSAC '96.
[7] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[8] Alicia Dickenstein,et al. The membership problem for unmixed polynomial ideals is solvable in single exponential time , 1991, Discret. Appl. Math..
[9] Chee-Keng Yap,et al. A New Lower Bound Construction for Commutative Thue Systems with aApplications , 1991, J. Symb. Comput..
[10] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[11] J. Kollár. Sharp effective Nullstellensatz , 1988 .
[12] Stephan Ritscher,et al. Degree bounds for Gröbner bases of low-dimensional polynomial ideals , 2010, ISSAC.
[13] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[14] Dung T. Huynh,et al. A Superexponential Lower Bound for Gröbner Bases and Church-Rosser Commutative Thue Systems , 1986, Inf. Control..
[15] H. Michael Möller,et al. Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.