Dimension-dependent bounds for Gröbner bases of polynomial ideals

Given a basis F of a polynomial ideal I in K[x"1,...,x"n] with degrees deg(F)@?d, the degrees of the reduced Grobner basis G w.r.t. any admissible monomial ordering are known to be double exponential in the number of indeterminates in the worst case, i.e. deg(G)=d^2^^^@Q^^^(^^^n^^^). This was established in Mayr and Meyer (1982) andDube (1990). We modify both constructions in order to give worst case bounds depending on the ideal dimension proving that deg(G)=d^n^^^@Q^^^(^^^1^^^)^2^^^@Q^^^(^^^r^^^) for r-dimensional ideals (in the worst case).

[1]  Joachim Schmid,et al.  On the affine Bezout inequality , 1995 .

[2]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[3]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[4]  Thomas Dubé,et al.  The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..

[5]  Zbigniew Jelonek,et al.  On the effective Nullstellensatz , 2005 .

[6]  Ernst W. Mayr,et al.  Exponential space computation of Gröbner bases , 1996, ISSAC '96.

[7]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[8]  Alicia Dickenstein,et al.  The membership problem for unmixed polynomial ideals is solvable in single exponential time , 1991, Discret. Appl. Math..

[9]  Chee-Keng Yap,et al.  A New Lower Bound Construction for Commutative Thue Systems with aApplications , 1991, J. Symb. Comput..

[10]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[11]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[12]  Stephan Ritscher,et al.  Degree bounds for Gröbner bases of low-dimensional polynomial ideals , 2010, ISSAC.

[13]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[14]  Dung T. Huynh,et al.  A Superexponential Lower Bound for Gröbner Bases and Church-Rosser Commutative Thue Systems , 1986, Inf. Control..

[15]  H. Michael Möller,et al.  Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.