Efficient calculation of constraint back-offs for optimization under uncertainty: A case study on maleic anhydride synthesis

Abstract In the present work we propose an efficient and general algorithm for optimization under uncertainty based on the work of Srinivasan et al. (2003). We use specialized cubature rules to speed up the uncertainty propagation step which results in a significant reduction of the overall computational effort. The approach is illustrated by studying the optimal design of a fixed bed reactor for the synthesis of maleic anhydride from raffinate II feedstock, where the amount of n -butane and n -butenes in the feed is assumed to be uncertain. Applying the algorithm results in a robustified reactor design which shows significantly less temperature constraint violations and runaway conditions while still satisfying reactor performance criteria such as minimally required conversion and maximum allowable pressure drop.

[1]  Anthony G. Dixon,et al.  An improved equation for the overall heat transfer coefficient in packed beds , 1996 .

[2]  P. Zehner,et al.  Einfluß der Wärmestrahlung und des Druckes auf den Wärmetransport in nicht durchströmten Schüttungen , 1972 .

[3]  Lorenz T. Biegler,et al.  Optimization of grade transitions in polyethylene solution polymerization process under uncertainty , 2016, Comput. Chem. Eng..

[4]  Fernando P. Bernardo Performance of cubature formulae in probabilistic model analysis and optimization , 2015, J. Comput. Appl. Math..

[5]  Robert J. Flassig,et al.  Probabilistic reactor design in the framework of elementary process functions , 2016, Comput. Chem. Eng..

[6]  Luis A. Ricardez-Sandoval,et al.  Stochastic back‐off algorithm for simultaneous design, control, and scheduling of multiproduct systems under uncertainty , 2018 .

[7]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[8]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[9]  Dominique Bonvin,et al.  NMPC using Pontryagin's Minimum Principle-Application to a two-phase semi-batch hydroformylation reactor under uncertainty , 2018, Comput. Chem. Eng..

[10]  Ignacio E. Grossmann,et al.  Optimum design of chemical plants with uncertain parameters , 1978 .

[11]  Hannsjörg Freund,et al.  Optimization under uncertainty in chemical engineering: Comparative evaluation of unscented transformation methods and cubature rules , 2018 .

[12]  Niko Rossner,et al.  Quality-by-Design Using a Gaussian Mixture Density Approximation of Biological Uncertainties , 2010 .

[13]  Gerhard Mestl,et al.  Modeling the dynamic behavior of industrial fixed bed reactors for the manufacture of maleic anhydride , 2017 .

[14]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty , 2003, Comput. Chem. Eng..

[15]  K. Schnitzlein,et al.  The influence of confining walls on the pressure drop in packed beds , 2001 .

[16]  S. Ergun,et al.  Fluid Flow through Randomly Packed Columns and Fluidized Beds , 1949 .

[17]  E. Schlünder,et al.  Effektive radiale Wärmeleitfähigkeit gasdurchströmter Schüttungen aus Partikeln unterschiedlicher Form , 1976 .

[18]  S. Palanki,et al.  A feedback-based implementation scheme for batch process optimization , 2000 .

[19]  R. Cools,et al.  Monomial cubature rules since “Stroud”: a compilation , 1993 .

[20]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[21]  René Schenkendorf,et al.  Robust Design of Chemical Processes Based on a One-Shot Sparse Polynomial Chaos Expansion Concept , 2017 .

[22]  Lorenz T. Biegler,et al.  Design for model parameter uncertainty using nonlinear confidence regions , 2001 .

[23]  Filip Logist,et al.  Approximate robust optimization of nonlinear systems under parametric uncertainty and process noise , 2015 .

[24]  David L. Darmofal,et al.  Higher-Dimensional Integration with Gaussian Weight for Applications in Probabilistic Design , 2005, SIAM J. Sci. Comput..

[25]  Richard D. Braatz,et al.  Polynomial chaos‐based robust design of systems with probabilistic uncertainties , 2016 .

[26]  Bettina Kraushaar-Czarnetzki,et al.  Maleic Anhydride from Mixtures of n-Butenes and n-Butane: Simulation of a Production-Scale Nonisothermal Fixed-Bed Reactor , 2007 .

[27]  Alexander Mitsos,et al.  Multi-model approach based on parametric sensitivities - A heuristic approximation for dynamic optimization of semi-batch processes with parametric uncertainties , 2017, Comput. Chem. Eng..

[28]  Z. Nagy,et al.  Distributional uncertainty analysis using power series and polynomial chaos expansions , 2007 .

[29]  Bettina Kraushaar-Czarnetzki,et al.  Maleic Anhydride from Mixtures of n-Butenes and n-Butane: Effective Reaction Kinetics , 2005 .

[30]  M. Kolb,et al.  Industrielle organische Chemie , 1993 .

[31]  Fernando P. Bernardo,et al.  Quality costs and robustness criteria in chemical process design optimization , 2001 .

[32]  M. Wendt,et al.  Nonlinear Chance-Constrained Process Optimization under Uncertainty , 2002 .

[33]  Michael Nilles,et al.  Radiale Wärmeleitung in durchströmten Schüttungsrohren , 1993 .

[34]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[35]  Ignacio E. Grossmann,et al.  Optimal process design under uncertainty , 1983 .

[36]  Ronald Cools,et al.  An encyclopaedia of cubature formulas , 2003, J. Complex..

[37]  Daniel Watzenig,et al.  Statistical robust design using the unscented transformation , 2005 .

[38]  Fernando P. Bernardo Model analysis and optimization under uncertainty using thinned cubature formulae , 2016, Comput. Chem. Eng..

[39]  Mukul Agarwal,et al.  ROBUST INPUT POLICIES FOR BATCH REACTORS UNDER PARAMETRIC UNCERTAINTY , 1995 .

[40]  S. Ergun Fluid flow through packed columns , 1952 .

[41]  Fernando P. Bernardo,et al.  Robustness criteria in process design optimization under uncertainty , 1999 .

[42]  Rudolf Schürer,et al.  A comparison between (quasi-)Monte Carlo and cubature rule based methods for solving high-dimensional integration problems , 2003, Math. Comput. Simul..

[43]  A. Stroud Approximate calculation of multiple integrals , 1973 .