Heterostructured catalysts prepared by dispersing Au@Fe2O3 core–shell structures on supports and their performance in CO oxidation

[1]  F. Kapteijn,et al.  Weakly bound capping agents on gold nanoparticles in catalysis: Surface poison? , 2010 .

[2]  H. Kageyama,et al.  Depletion of CO oxidation activity of supported Au catalysts prepared from thiol-capped Au nanoparticles by sulfates formed at Au–titania boundaries: Effects of heat treatment conditions on catalytic activity , 2010 .

[3]  M. Chi,et al.  Activation of Dodecanethiol-Capped Gold Catalysts for CO Oxidation by Treatment with KMnO4 or K2MnO4 , 2010 .

[4]  Xin-bo Zhang,et al.  Bimetallic Au-Ni nanoparticles embedded in SiO2 nanospheres: synergetic catalysis in hydrolytic dehydrogenation of ammonia borane. , 2010, Chemistry.

[5]  J. Fierro,et al.  Supported gold catalysts in SBA-15 modified with TiO2 for oxidation of carbon monoxide , 2010 .

[6]  F. Schüth,et al.  Ex-post size control of high-temperature-stable yolk-shell Au, @ZrO(2) catalysts. , 2010, Chemical communications.

[7]  E. Gaigneaux,et al.  Catalytic combustion of toluene over cluster-derived gold/iron catalysts , 2010 .

[8]  T. Akita,et al.  Preparation of ∼1 nm Gold Clusters Confined within Mesoporous Silica and Microwave-Assisted Catalytic Application for Alcohol Oxidation , 2009 .

[9]  H. Yin,et al.  Low-Temperature Solution-Phase Synthesis of NiAu Alloy Nanoparticles via Butyllithium Reduction: Influences of Synthesis Details and Application As the Precursor to Active Au-NiO/SiO2 Catalysts through Proper Pretreatment , 2009 .

[10]  Zili Wu,et al.  DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst: nature and role of different Au species , 2009 .

[11]  B. Gates,et al.  CO oxidation catalyzed by gold supported on MgO: Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation , 2009 .

[12]  V. P. Patil,et al.  Nano-gold supported on Fe2O3: A highly active catalyst for low temperature oxidative destruction of methane green house gas from exhaust/waste gases , 2008 .

[13]  Elena V. Shevchenko,et al.  Gold/Iron Oxide Core/Hollow‐Shell Nanoparticles , 2008 .

[14]  Tierui Zhang,et al.  Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. , 2008, Angewandte Chemie.

[15]  H. Yin,et al.  Metal Phosphates as a New Class of Supports for Gold Nanocatalysts , 2008 .

[16]  Avelino Corma,et al.  Supported gold nanoparticles as catalysts for organic reactions. , 2008, Chemical Society reviews.

[17]  L. Prati,et al.  Selective oxidation using gold. , 2008, Chemical Society reviews.

[18]  B. Gates,et al.  Catalysis by gold dispersed on supports: the importance of cationic gold. , 2008, Chemical Society reviews.

[19]  Hyunjoon Song,et al.  A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p‐Nitrophenol , 2008 .

[20]  Benxia Li,et al.  High-Temperature-Stable Au@SnO2 Core/Shell Supported Catalyst for CO Oxidation , 2008 .

[21]  A. Gedanken,et al.  Synthesis of Porous α-Fe2O3 Nanorods and Deposition of Very Small Gold Particles in the Pores for Catalytic Oxidation of CO , 2007 .

[22]  Robert J. Davis,et al.  Understanding Au-Catalyzed Low-Temperature CO Oxidation , 2007 .

[23]  Z. Pan,et al.  Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor , 2007 .

[24]  Huaxing Sun,et al.  Anchoring highly active gold nanoparticles on SiO2 by CoOx additive , 2007 .

[25]  P. Fornasiero,et al.  Monolayer protected gold nanoparticles on ceria for an efficient CO oxidation catalyst , 2007 .

[26]  E. Tanabe,et al.  Specific performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas , 2007 .

[27]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[28]  Nanfeng Zheng,et al.  A general synthetic strategy for oxide-supported metal nanoparticle catalysts. , 2006, Journal of the American Chemical Society.

[29]  R. Nuzzo,et al.  Preparation of TiO2-supported Au nanoparticle catalysts from a Au13 cluster precursor: Ligand removal using ozone exposure versus a rapid thermal treatment , 2006 .

[30]  D. Goodman,et al.  CO oxidation over Au/TiO2 prepared from metal-organic gold complexes , 2006 .

[31]  Aiqin Wang,et al.  CO oxidation catalyzed by gold nanoparticles confined in mesoporous aluminosilicate Al-SBA-15: Pretreatment methods , 2006 .

[32]  J. Moulijn,et al.  Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold , 2006 .

[33]  Lajos Tóth,et al.  Silica-supported Au nanoparticles decorated by TiO2: formation, morphology, and CO oxidation activity. , 2006, The journal of physical chemistry. B.

[34]  A. Corma,et al.  Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. , 2006, Angewandte Chemie.

[35]  Luis M. Liz-Marzán,et al.  Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods , 2006 .

[36]  S. Tsang,et al.  Comparison of new microemulsion prepared "Pt-in-Ceria" catalyst with conventional "Pt-on-Ceria" catalyst for water-gas shift reaction. , 2006, The journal of physical chemistry. B.

[37]  Ferdi Schüth,et al.  Support effect in high activity gold catalysts for CO oxidation. , 2006, Journal of the American Chemical Society.

[38]  M. Comotti,et al.  Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation , 2006 .

[39]  S. Tsang,et al.  Engineering Pt in ceria for a maximum metal-support interaction in catalysis. , 2005, Journal of the American Chemical Society.

[40]  S. Takenaka,et al.  Control of Selectivity Based on the Diffusion Rates of the Reactants in the Oxidation of Mixed Hydrocarbons with Molecular Oxygen over Silica-coated Pt Catalysts , 2005 .

[41]  Mool C. Gupta,et al.  Au/Fe2O3 nanocatalysts for CO oxidation: A comparative study of deposition–precipitation and coprecipitation techniques , 2005 .

[42]  S. Mahurin,et al.  Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation. , 2005, The journal of physical chemistry. B.

[43]  Z. Pan,et al.  Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. , 2005, Journal of the American Chemical Society.

[44]  J. Moulijn,et al.  The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts : a combined Mossbauer, FT-IR, and TAP reactor study , 2005 .

[45]  B. E. Nieuwenhuys,et al.  The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria , 2005 .

[46]  E. McFarland,et al.  Gas-Phase Catalysis by Micelle Derived Au Nanoparticles on Oxide Supports , 2004 .

[47]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[48]  E. Hagaman,et al.  Surface sol-gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles , 2004 .

[49]  R. Behm,et al.  Highly Active Au/TiO2 Catalysts for Low-Temperature CO Oxidation: Preparation, Conditioning and Stability , 2003 .

[50]  L. Liz‐Marzán,et al.  The Assembly of Coated Nanocrystals , 2003 .

[51]  C. Manfredotti,et al.  Nanometer-sized gold particles supported on SiO2 by deposition of gold sols from Au(PPh3)3Cl , 2003 .

[52]  S. Tsang,et al.  Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalysts , 2003 .

[53]  D. Goodman,et al.  Oxidation Catalysis by Supported Gold Nano-Clusters , 2002 .

[54]  D. Jiang,et al.  Stability and Deactivation of Au/Fe2O3 Catalysts for CO Oxidation at Ambient Temperature and Moisture , 2002 .

[55]  A. Datye,et al.  CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex , 2002 .

[56]  Q. Pankhurst,et al.  Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation , 2002 .

[57]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[58]  S. Galvagno,et al.  Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide , 2001 .

[59]  Gianmario Martra,et al.  Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phase oxidation , 2000 .

[60]  David Thompson,et al.  Catalysis By Gold , 1999 .

[61]  J. Grunwaldt,et al.  Preparation of Supported Gold Catalysts for Low-Temperature CO Oxidation via “Size-Controlled” Gold Colloids , 1999 .

[62]  B. E. Nieuwenhuys,et al.  CO adsorption and oxidation on Au/TiO2 , 1998 .

[63]  M. Haruta,et al.  Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation , 1998 .

[64]  A. I. Kozlov,et al.  Iron-Oxide Supported Gold Catalysts Derived from Gold-Phosphine Complex Au(PPh3)(NO3): State and Structure of the Support , 1998 .

[65]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[66]  Paul Mulvaney,et al.  Synthesis of Nanosized Gold−Silica Core−Shell Particles , 1996 .

[67]  H. Wan,et al.  Preparation of supported gold catalysts from gold complexes and their catalytic activities for CO oxidation , 1996 .

[68]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[69]  A. Wokaun,et al.  CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior, and reaction mechanism , 1992 .

[70]  G. Shirane,et al.  Neutron-diffraction study of antiferromagnetic FeTi03 and its solid solutions with α-Fe2O3☆ , 1959 .