Measures of Specificity

Specificity is introduced and shown to be a measure of the information contained in a fuzzy subset. A characterization of this measure is provided as well as a number of manifestations of the measure.

[1]  G. Klir,et al.  MEASURES OF UNCERTAINTY AND INFORMATION BASED ON POSSIBILITY DISTRIBUTIONS , 1982 .

[2]  Theral O. Moore,et al.  Elementary General Topology , 1965 .

[3]  Ronald R. Yager,et al.  Default knowledge and measures of specificity , 1992, Inf. Sci..

[4]  M. Sugeno FUZZY MEASURES AND FUZZY INTEGRALS—A SURVEY , 1993 .

[5]  D. Dubois,et al.  A set-theoretic view of belief functions: Logical operations and approximations by fuzzy sets , 1986 .

[6]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[7]  D. Dubois,et al.  A NOTE ON MEASURES OF SPECIFICITY FOR FUZZY SETS , 1985 .

[8]  前田 博,et al.  Didier Dubois and Henri Prade Fuzzy sets in approximate reasoning, Part 1 : Inference with possibility distributions Fuzzy Sets and Systems, vol.40,pp143-202,1991 , 1995 .

[9]  L. Zadeh,et al.  Fuzzy sets and applications : selected papers , 1987 .

[10]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[11]  Ronald R. Yager,et al.  Toward a general theory of reasoning with uncertainty. I: Nonspecificity and fuzziness , 1986, Int. J. Intell. Syst..

[12]  D Dubois,et al.  Belief structures, possibility theory and decomposable confidence measures on finite sets , 1986 .

[13]  R. Yager MEASURING TRANQUILITY AND ANXIETY IN DECISION MAKING: AN APPLICATION OF FUZZY SETS , 1982 .

[14]  D. Dubois,et al.  Fuzzy sets in approximate reasoning. I, Inference with possibility distributions , 1991 .

[15]  Hung T. Nguyen,et al.  Uncertainty Models for Knowledge-Based Systems; A Unified Approach to the Measurement of Uncertainty , 1985 .

[16]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[17]  R. Yager On the specificity of a possibility distribution , 1992 .

[18]  Sergei Ovchinnikov,et al.  Fuzzy sets and applications , 1987 .

[19]  Peter Raeth,et al.  Book review: Fuzzy Engineering by Bart Kosko (Prentice Hall, 1997) , 1998, SGAR.

[20]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[21]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[22]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[23]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[24]  Ronald R. Yager,et al.  Measuring the Quality of Linguistic Forecasts , 1984, Int. J. Man Mach. Stud..

[25]  Philippe Smets Non-standard logics for automated reasoning , 1988 .

[26]  Ronald R. Yager,et al.  Uncertainty in Knowledge-Based Systems , 1987, Lecture Notes in Computer Science.

[27]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[28]  Smets Ph.,et al.  Belief functions, Non-standard logics for automated reasoning , 1988 .

[29]  Didier Dubois,et al.  The principle of minimum specificity as a basis for evidential reasoning , 1986, IPMU.

[30]  Bart Kosko,et al.  Fuzzy entropy and conditioning , 1986, Inf. Sci..

[31]  R. Yager Ordinal measures of specificity , 1990 .

[32]  Didier Dubois,et al.  Fuzzy information engineering: a guided tour of applications , 1997 .

[33]  James C. Bezdek,et al.  Analysis of fuzzy information , 1987 .

[34]  Ronald R. Yager,et al.  Arithmetic and Other Operations on Dempster-Shafer Structures , 1986, Int. J. Man Mach. Stud..

[35]  Ronald R. Yager,et al.  The entailment principle for dempster—shafer granules , 1986, Int. J. Intell. Syst..

[36]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions , 1999 .

[37]  Ronald R. Yager,et al.  SIMILARITY BASED SPECIFICITY MEASURES , 1991 .

[38]  Ronald R. Yager,et al.  Reasoning with Uncertainty for Expert Systems , 1985, IJCAI.

[39]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..