Asymptotic behaviour of global solutions to a model of cell invasion

In this paper we analyze a mathematical model focusing on key events of the cells invasion process. Global well-possedness and asymptotic behaviour of nonnegative solutions to the corresponding coupled system of three nonlinear partial differential equations are studied.

[1]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[2]  Christoph Walker,et al.  Global Existence of Classical Solutions for a Haptotaxis Model , 2007, SIAM J. Math. Anal..

[3]  M. Chaplain,et al.  Mathematical Modelling of Tissue Invasion , 2003 .

[4]  Mingjun Wang,et al.  A Combined Chemotaxis-haptotaxis System: The Role of Logistic Source , 2009, SIAM J. Math. Anal..

[5]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[6]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[7]  Y. Tao,et al.  Global Solution to a Model of Tumor Invasion 1 , 2007 .

[8]  G. Liţcanu,et al.  Global solutions and asymptotic behavior for a parabolic degenerate coupled system arising from biology , 2009, 0902.4531.

[9]  H. Byrne,et al.  Extracellular matrix concentration exerts selection pressure on invasive cells. , 1999, European journal of cancer.

[10]  Cristian Morales-Rodrigo,et al.  Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours , 2008, Math. Comput. Model..

[11]  Haim Brezis,et al.  Remarks on sublinear elliptic equations , 1986 .

[12]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[13]  M. Chaplain,et al.  Mathematical modelling of tumour invasion and metastasis , 2000 .

[14]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[15]  Youshan Tao Global existence of classical solutions to a combined chemotaxis–haptotaxis model with logistic source , 2009 .

[16]  Mark A. J. Chaplain,et al.  Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions , 2009 .

[17]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[18]  Nicola Bellomo,et al.  On the foundations of cancer modelling: Selected topics, speculations, and perspectives , 2008 .

[19]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[20]  Atsushi Yagi,et al.  NORM BEHAVIOR OF SOLUTIONS TO A PARABOLIC SYSTEM OF CHEMOTAXIS , 1997 .

[21]  Youshan Tao,et al.  Global solution for a chemotactic–haptotactic model of cancer invasion , 2008 .

[22]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[23]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .