Rational design of silicon-based composites for high-energy storage devices

Silicon-based composites are very promising anode materials for boosting the energy density of lithium-ion batteries (LIBs). These silicon-based anodes can also replace the dendrite forming lithium metal anodes in lithium metal-free Li–O2 and Li–S batteries, which can offer energy content far beyond that of current LIBs. However, it is challenging to design silicon-based materials for use as anodes in real energy storage devices. In this review, we discuss how to boost the energy content of LIBs, the pros and cons of silicon-based anodes, and challenges associated with silicon-based anodes. A major focus of this review is on the rational design of silicon-based composite anodes to address the outstanding issues. In addition, high energy LIBs and Li–S batteries that employ silicon-based anodes are introduced and discussed.

[1]  Ja-Yeon Choi,et al.  3D Si/C particulate nanocomposites internally wired with graphene networks for high energy and stable batteries , 2015 .

[2]  D. Aurbach,et al.  Review on Li‐Sulfur Battery Systems: an Integral Perspective , 2015 .

[3]  Yun-Sung Lee,et al.  Research Progress on Negative Electrodes for Practical Li‐Ion Batteries: Beyond Carbonaceous Anodes , 2015 .

[4]  Seung M. Oh,et al.  Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode. , 2015, Nano letters.

[5]  Taek-Soo Kim,et al.  Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes , 2015 .

[6]  Yi Cui,et al.  Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. , 2015, ACS nano.

[7]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[8]  Bin Luo,et al.  Design and construction of three dimensional graphene-based composites for lithium ion battery applications , 2015 .

[9]  Bo Liang,et al.  Silicon-based materials as high capacity anodes for next generation lithium ion batteries , 2014 .

[10]  Taek-Soo Kim,et al.  Systematic Molecular‐Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries , 2014, Advanced materials.

[11]  Bingyun Li,et al.  Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries , 2014 .

[12]  V. Battaglia,et al.  Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. , 2014, Nano letters.

[13]  Xiong Pu,et al.  Safe and reliable operation of sulfur batteries with lithiated silicon , 2014 .

[14]  A. Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-micro letters.

[15]  Wei Fu,et al.  Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li‐Ion Battery Anodes with High Structure Stability , 2014, Advanced materials.

[16]  Jaephil Cho,et al.  Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. , 2014, ACS nano.

[17]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[18]  Yang‐Kook Sun,et al.  Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries , 2014 .

[19]  Ling Huang,et al.  A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. , 2014, Chemical communications.

[20]  Yang‐Kook Sun,et al.  A High‐Energy Li‐Ion Battery Using a Silicon‐Based Anode and a Nano‐Structured Layered Composite Cathode , 2014 .

[21]  H. Althues,et al.  Carbon‐Based Anodes for Lithium Sulfur Full Cells with High Cycle Stability , 2014 .

[22]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[23]  Yang‐Kook Sun,et al.  A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode. , 2014, ACS applied materials & interfaces.

[24]  M. Ge,et al.  Review of porous silicon preparation and its application for lithium-ion battery anodes , 2013, Nanotechnology.

[25]  K Ramesha,et al.  Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. , 2013, Nature materials.

[26]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[27]  Doron Aurbach,et al.  A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5 V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution , 2013 .

[28]  Chong Seung Yoon,et al.  Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium Batteries , 2013 .

[29]  Haijun Yu,et al.  High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. , 2013, The journal of physical chemistry letters.

[30]  Shuru Chen,et al.  Micro‐sized Si‐C Composite with Interconnected Nanoscale Building Blocks as High‐Performance Anodes for Practical Application in Lithium‐Ion Batteries , 2013 .

[31]  Meihua Jin,et al.  Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. , 2013, ACS nano.

[32]  Jiajun Chen,et al.  Recent Progress in Advanced Materials for Lithium Ion Batteries , 2013, Materials.

[33]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[34]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[35]  Ya‐Xia Yin,et al.  Self‐Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium‐Ion Batteries , 2012 .

[36]  Shuru Chen,et al.  Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. , 2012, Physical chemistry chemical physics : PCCP.

[37]  Jaephil Cho,et al.  High‐Performance Macroporous Bulk Silicon Anodes Synthesized by Template‐Free Chemical Etching , 2012 .

[38]  Jiayan Luo,et al.  Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[39]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[40]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[41]  Bruno Scrosati,et al.  A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery , 2012 .

[42]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[43]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[44]  Harold H. Kung,et al.  In‐Plane Vacancy‐Enabled High‐Power Si–Graphene Composite Electrode for Lithium‐Ion Batteries , 2011 .

[45]  Y. Suh,et al.  Reassembled graphene-platelets encapsulated silicon nanoparticles for Li-ion battery anodes. , 2011, Journal of nanoscience and nanotechnology.

[46]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[47]  Byung-Seon Kong,et al.  Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries , 2011 .

[48]  Cheol‐Min Park,et al.  Electrochemical behavior of SiO anode for Li secondary batteries , 2011 .

[49]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[50]  G. Yushin,et al.  Nanosilicon‐Coated Graphene Granules as Anodes for Li‐Ion Batteries , 2011 .

[51]  Akinori Kita,et al.  Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes , 2011 .

[52]  Yang-Kook Sun,et al.  A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries , 2011 .

[53]  Zaiping Guo,et al.  Si-based anode materials for lithium rechargeable batteries , 2010 .

[54]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[55]  Hansu Kim,et al.  Polymer microsphere embedded Si/graphite composite anode material for lithium rechargeable battery , 2010 .

[56]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[57]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[58]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[59]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[60]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[61]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[62]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[63]  Jae‐Hun Kim,et al.  Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries , 2007 .

[64]  Ye Cai,et al.  Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas , 2007, Nature.

[65]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[66]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[67]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[68]  Mariko Miyachi,et al.  Analysis of SiO Anodes for Lithium-Ion Batteries , 2005 .

[69]  M. Yoshio,et al.  Electrochemical behaviors of silicon based anode material , 2005 .

[70]  Richard E. Smalley,et al.  Future Global Energy Prosperity: The Terawatt Challenge , 2005 .

[71]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[72]  S Pacala,et al.  Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies , 2004, Science.

[73]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[74]  Jingying Xie,et al.  SiOx-based anodes for secondary lithium batteries , 2002 .

[75]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[76]  R. Mcmillan,et al.  Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes , 1999 .

[77]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[78]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[79]  T. Sakai,et al.  High-Capacity Li-Ion Batteries Using SiO-Si Composite Anode and Li-Rich Layered Oxide Cathode: Cell Design and Its Safety Evaluation , 2015 .

[80]  Viktor Hacker,et al.  Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes , 2014 .

[81]  Soojin Park,et al.  High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching , 2013 .

[82]  Doron Aurbach,et al.  An Advanced Lithium Ion Battery Based on Amorphous Silicon Film Anode and Integrated xLi2MnO3.(1-x)LiNiyMnzCo1-y-zO2 Cathode , 2013 .

[83]  D. Aurbach,et al.  Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS2 Cathodes and Fluoroethyene Carbonate (FEC) as a Critically Important Component , 2012 .

[84]  Doron Aurbach,et al.  Rechargeable lithiated silicon–sulfur (SLS) battery prototypes , 2012 .

[85]  Bruno Scrosati,et al.  Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery , 2011 .

[86]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[87]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[88]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .