Machine Learning Optimization of p-Type Transparent Conducting Films

p-Type transparent conducting materials (p-TCMs) are important components of optoelectronic devices including solar cells, photodetectors, displays, and flexible sensors. Cu–Zn–S thin films prepare...

[1]  C. Lokhande,et al.  Chemical deposition method for metal chalcogenide thin films , 2000 .

[2]  K. Nemade,et al.  Band gap engineering of CuS nanoparticles for artificial photosynthesis , 2015 .

[3]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[4]  Lin-wang Wang,et al.  Copper‐alloyed ZnS as a p‐type transparent conducting material , 2012 .

[5]  Chih-Jen Lin,et al.  Training and Testing Low-degree Polynomial Data Mappings via Linear SVM , 2010, J. Mach. Learn. Res..

[6]  B. Uberuaga,et al.  Using Machine Learning To Identify Factors That Govern Amorphization of Irradiated Pyrochlores , 2016, 1607.06789.

[7]  Feng Lin,et al.  Machine Learning Directed Search for Ultraincompressible, Superhard Materials. , 2018, Journal of the American Chemical Society.

[8]  Klaus Hinkelmann,et al.  Design and Analysis of Experiments: Special Designs and Applications , 2012 .

[9]  S. Chand,et al.  Copper thiocyanate (CuSCN): an efficient solution-processable hole transporting layer in organic solar cells , 2015 .

[10]  Carl M. Lampert,et al.  Editorial: Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells , 2008 .

[11]  K. Sankaranarayanan,et al.  Effect of EDTA concentration on the physical and optical properties of Cds thin films , 2013 .

[12]  Mu-Chen Chen,et al.  Credit scoring with a data mining approach based on support vector machines , 2007, Expert Syst. Appl..

[13]  Hebert Montegranario,et al.  Radial Basis Functions , 2014 .

[14]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[15]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. Moon,et al.  Effect of pH on the characteristics of nanocrystalline ZnS thin films prepared by CBD method in acidic medium , 2010 .

[17]  M. Ichimura,et al.  Heterojunctions based on photochemically deposited CuxZnyS and electrochemically deposited ZnO , 2015 .

[18]  Lukas Turcani,et al.  Machine Learning for Organic Cage Property Prediction , 2019 .

[19]  J. Buriak,et al.  Reporting performance in organic photovoltaic devices. , 2013, ACS nano.

[20]  G. Lavareda,et al.  Optoelectronic properties of transparent p‐type semiconductor CuxS thin films , 2010 .

[21]  p-Type Zinc Oxide Spinels: Application to Transparent Conductors and Spintronics , 2013, 1312.1728.

[22]  L. A. González,et al.  p-Type transparent Cu doped ZnS thin films by the chemical bath deposition method , 2014 .

[23]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[24]  A First Course in Design and Analysis of Experiments , 2003 .

[25]  Xiangyang Ma,et al.  Effects of complexing agent on CdS thin films prepared by chemical bath deposition , 2004 .

[26]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[27]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[28]  R. Waser,et al.  Chemical Solution Deposition of Functional Oxide Thin Films , 2013 .

[29]  R. Egdell,et al.  P-type transparent conducting oxides , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  C. Ballif,et al.  Transparent Electrodes for Efficient Optoelectronics , 2017 .

[31]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[32]  V. Pecharsky,et al.  Magnetocaloric Behavior in Ternary Europium Indides EuT5In: Probing the Design Capability of First-Principles-Based Methods on the Multifaceted Magnetic Materials , 2017 .

[33]  Michele Pavone,et al.  First-Principles Design of New Electrodes for Proton-Conducting Solid-Oxide Electrochemical Cells: A-Site Doped Sr2Fe1.5Mo0.5O6−δ Perovskite , 2016 .

[34]  M. Toney,et al.  Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells. , 2016, Nano letters.

[35]  Guifeng Li,et al.  p-type transparent conductor: Zn-doped CuAlS2 , 2007 .

[36]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[37]  G. Haacke New figure of merit for transparent conductors , 1976 .

[38]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[39]  D. Ginley,et al.  Handbook of transparent conductors , 2011 .

[40]  T. Simpson,et al.  Analysis of support vector regression for approximation of complex engineering analyses , 2005, DAC 2003.

[41]  Giulia Galli,et al.  Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3AI3 (A = Pb and Sn) , 2014 .

[42]  Kristin A. Persson,et al.  Electrochemical Stability of Metastable Materials , 2017 .

[43]  D. Keszler,et al.  Transparent p-type conducting BaCu2S2 films , 2002 .

[44]  M. Ichimura,et al.  Electrochemical Deposition of CuxS and CuxZnyS Thin Films with p-Type Conduction and Photosensitivity , 2012 .

[45]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[46]  Lawrence A. Adutwum,et al.  How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. , 2018, ACS nano.

[47]  Tony Gray Transparent Conductors , 2018, Projected Capacitive Touch.

[48]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[49]  V. Ozoliņš,et al.  Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc , 2015 .

[50]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[51]  Erik Johansson,et al.  Generalized Subset Designs in Analytical Chemistry. , 2017, Analytical chemistry.

[52]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[53]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[54]  Anjali Kshirsagar,et al.  Photophysical properties of ZnS nanoclusters , 2000 .

[55]  A. Javey,et al.  Solution‐Processed Transparent Self‐Powered p‐CuS‐ZnS/n‐ZnO UV Photodiode , 2018 .

[56]  C. Choi,et al.  Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se 2 thin film solar cell , 2018 .

[57]  Tin Kam Ho,et al.  A Data Complexity Analysis of Comparative Advantages of Decision Forest Constructors , 2002, Pattern Analysis & Applications.

[58]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[59]  Swanti Satsangi,et al.  Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene , 2018, Chemistry of Materials.

[60]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[61]  A. Subrahmanyam,et al.  p-type transparent conducting In2O3-Ag2O thin films prepared by reactive electron beam evaporation technique , 2000 .

[62]  H. Ohta,et al.  Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial films , 2003 .

[63]  D. Lim,et al.  Characterization of ZnS Thin Films Grown Using Chemical Bath Deposition with Three Different Complexing Agents. , 2018, Journal of nanoscience and nanotechnology.

[64]  Wenjun Yang,et al.  Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors , 2004 .

[65]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[66]  I. Sharp,et al.  P‐Type Transparent Cu‐Alloyed ZnS Deposited at Room Temperature , 2016 .

[67]  K. Fleischer,et al.  Quantifying the Performance of P-Type Transparent Conducting Oxides by Experimental Methods , 2017, Materials.

[68]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[69]  A. Draeseke,et al.  p-Type conductivity in the delafossite structure , 2001 .

[70]  Fuqiang Huang,et al.  p-Type electrical conduction and wide optical band gap in Mg-doped CuAlS2 , 2008 .

[71]  Leif E. Peterson K-nearest neighbor , 2009, Scholarpedia.

[72]  Mauricio Ortega-López,et al.  Improved efficiency of the chemical bath deposition method during growth of ZnO thin films , 2003 .

[73]  Jingjing Xu,et al.  Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 Thermoelectric Compound , 2010 .

[74]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[75]  O. Conde,et al.  Transparent p-type CuxS thin films , 2011 .

[76]  H. Angerer,et al.  Thermopower investigation of n- and p-type GaN , 1998 .

[77]  Jakoah Brgoch,et al.  Disentangling Structural Confusion through Machine Learning: Structure Prediction and Polymorphism of Equiatomic Ternary Phases ABC. , 2017, Journal of the American Chemical Society.

[78]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[79]  M. Ichimura,et al.  Photochemical deposition of a p-type transparent alloy semiconductor CuxZnyS , 2012 .

[80]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[81]  J. Ager,et al.  High figure-of-merit p-type transparent conductor, Cu alloyed ZnS via radio frequency magnetron sputtering , 2017 .

[82]  Gian-Marco Rignanese,et al.  High-Throughput Design of Non-oxide p-Type Transparent Conducting Materials: Data Mining, Search Strategy, and Identification of Boron Phosphide , 2017 .

[83]  Akihiko Kudo,et al.  Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution , 1999 .

[84]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[85]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[86]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[87]  Jeong Yong Lee,et al.  Preparation and characteristics of chemical bath deposited ZnS thin films: Effects of different complexing agents , 2012 .