Multigrid anisotropic diffusion

A multigrid anisotropic diffusion algorithm for image processing is presented. The multigrid implementation provides an efficient hierarchical relaxation method that facilitates the application of anisotropic diffusion to time-critical processes. Through a multigrid V-cycle, the anisotropic diffusion equations are successively transferred to coarser grids and used in a coarse-to-fine error correction scheme. When a coarse grid with a trivial solution is reached, the coarse grid estimates of the residual error can be propagated to the original grid and used to refine the solution. The main benefits of the multigrid approach are rapid intraregion smoothing and reduction of artifacts due to the elimination of low-frequency error. The theory of multigrid anisotropic diffusion is developed. Then, the intergrid transfer functions, relaxation techniques, diffusion coefficients, and boundary conditions are discussed. The analysis includes the examination of the storage requirements, the computational cost, and the solution quality. Finally, experimental results are reported that demonstrate the effectiveness of the multigrid approach.

[1]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[2]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[3]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[4]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[5]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[6]  Scott T. Acton,et al.  Anisotropic diffusion pyramids for image segmentation , 1994, Proceedings of 1st International Conference on Image Processing.

[7]  Jer-Sen Chen Generalized adaptive smoothing for multiscale edge detection , 1992, Defense, Security, and Sensing.

[8]  W. Bowen,et al.  Philadelphia , 1892 .

[9]  Scott T. Acton Edge enhancement of infrared imagery by way of the anisotropic diffusion pyramid , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Scott T. Acton,et al.  Hybridized edge preservation coefficient for anisotropic diffusion , 1996, Other Conferences.

[12]  Scott T. Acton,et al.  Target tracking using the anisotropic diffusion pyramid , 1996, Proceeding of Southwest Symposium on Image Analysis and Interpretation.

[13]  Guido Gerig,et al.  Vector-Valued Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[14]  Ross T. Whitaker,et al.  A multi-scale approach to nonuniform diffusion , 1993 .

[15]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Scott T. Acton,et al.  Anisotropic edge detection using mean field annealing , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Wenyuan Xu,et al.  Analysis and design of anisotropic diffusion for image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[19]  Scott T. Acton A pyramidal edge detector based on anisotropic diffusion , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.