A simple, reliable and fast algorithm for the simulation of multicomponent distillation columns

Abstract This work has developed a simple, reliable and fast algorithm for the simulation of multicomponent distillation columns, where any equilibrium stage can accept a feed-stream and/or a vapor-side-stream and/or liquid-side-stream. The new scheme considers internal molar overflows and constant relative volatilities to avoid the need of heat balances and vapor–liquid equilibrium calculations. The solution scheme is founded on a Newton-based formulation in block algebra, which relies in a simple, reliable and fast algorithm. Although the proposed calculation scheme can be classified as an approximate method, it is very useful when accurate phase equilibrium and enthalpy data are lacking. Numerical experimentations show good agreement with the results obtained with well-known rigorous simulation approaches.

[1]  U. Block,et al.  Development and application of a simulation model for three-phase distillation , 1976 .

[2]  M. Morari,et al.  Understanding the Dynamic Behavior of Distillation Columns , 1988 .

[3]  J. D. Seader,et al.  A modified Naphtali‐Sandholm method for general systems of interlinked, multistaged separators , 1978 .

[4]  Multicomponent three-phase azeotropic distillation. 1. Extensive experimental data and simulation results , 1990 .

[5]  E. R. Gilliland,et al.  Multicomponent Rectification Estimation of the Number of Theoretical Plates as a Function of the Reflux Ratio , 1940 .

[6]  Donald P. Mahoney,et al.  Distillation column control design using steady state models: Usefulness and limitations , 1993 .

[7]  Megan Jobson,et al.  Shortcut Models for Retrofit Design of Distillation Columns , 2003 .

[8]  Yoshikazu Ishii,et al.  Solving multicolumn equilibrium stage operations by total linearization , 1977 .

[9]  Buford D. Smith,et al.  An analysis of the equilibrium stage separations problem—formulation and convergence , 1964 .

[10]  Arturo Jiménez Gutiérrez,et al.  Design of Petlyuk Distillation Columns Aided with Collocation Techniques , 2007 .

[11]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[12]  Ernest J. Henley,et al.  Separation Process Principles , 1998 .

[13]  Aage Fredenslund,et al.  Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients , 1977 .

[14]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[15]  M. R. Fenske,et al.  Fractionation of Straight-Run Pennsylvania Gasoline , 1932 .

[16]  Donald P. Sandholm,et al.  Multicomponent separation calculations by linearization , 1971 .

[17]  Aage Fredenslund,et al.  Vapor-liquid Equilibria Using Unifac: A Group-Contribution Method , 2012 .

[18]  Rosendo Monroy-Loperena,et al.  Simulation of Multicomponent Multistage Vapor−Liquid Separations. An Improved Algorithm Using the Wang−Henke Tridiagonal Matrix Method , 2003 .

[19]  C. M. Crowe,et al.  Convergence promotion in the simulation of chemical processes with recycle-the dominant eigenvalue method , 1971 .

[20]  C. D. Holland,et al.  Fundamentals of Multicomponent Distillation , 1997 .

[21]  Arthur W. Westerberg,et al.  Collocation Methods for Distillation Design. 2. Applications for Distillation , 1996 .

[23]  Michael F. Malone,et al.  Conceptual design of distillation systems , 2001 .

[24]  Ignacio E. Grossmann,et al.  Aggregate models based on improved group methods for simulation and optimization of distillation systems , 2010, Comput. Chem. Eng..