Metascalable Quantum Molecular Dynamics Simulations of Hydrogen-on-Demand

We enabled an unprecedented scale of quantum molecular dynamics simulations through algorithmic innovations. A new lean divide-and-conquer density functional theory algorithm significantly reduces the prefactor of the O(N) computational cost based on complexity and error analyses. A globally scalable and locally fast solver hybridizes a global real-space multigrid with local plane-wave bases. The resulting weak-scaling parallel efficiency was 0.984 on 786,432 IBM Blue Gene/Q cores for a 50.3 million-atom (39.8 trillion degrees-of-freedom) system. The time-to-solution was 60-times less than the previous state-of-the art, owing to enhanced strong scaling by hierarchical band-space domain decomposition and high floating-point performance (50.5% of the peak). Production simulation involving 16,661 atoms for 21,140 time steps (or 129,208 self-consistent-field iterations) revealed a novel nanostructural design for on-demand hydrogen production from water, advancing renewable energy technologies. This metascalable (or "design once, scale on new architectures") algorithm is used for broader applications within a recently proposed divide-conquer-recombine paradigm.

[1]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[2]  Taisuke Boku,et al.  First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[3]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[4]  W. Chueh,et al.  High‐Flux Solar‐Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. , 2011 .

[5]  Rajiv K. Kalia,et al.  Embedded divide-and-conquer algorithm on hierarchical real-space grids: parallel molecular dynamics simulation based on linear-scaling density functional theory , 2005, Comput. Phys. Commun..

[6]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[7]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[8]  Subhash Saini,et al.  Collaborative Simulation Grid: Multiscale Quantum-Mechanical/Classical Atomistic Simulations on Distributed PC Clusters in the US and Japan , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[9]  Subhash Saini,et al.  Scalable atomistic simulation algorithms for materials research , 2001, SC.

[10]  Taisuke Ozaki O(N) Krylov-subspace method for large-scale ab initio electronic structure calculations , 2006 .

[11]  A. Nakano,et al.  Multiresolution molecular dynamics algorithm for realistic materials modeling on parallel computers , 1994 .

[12]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[13]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[14]  Ashish Sharma,et al.  De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers , 2008, Int. J. High Perform. Comput. Appl..

[15]  Koji Ando,et al.  Fragment molecular orbital study on electron tunneling mechanisms in bacterial photosynthetic reaction center. , 2012, The journal of physical chemistry. B.

[16]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[17]  A. Nakano,et al.  Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications , 2008 .

[18]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[19]  Priya Vashishta,et al.  Sustainable Adaptive Grid Supercomputing: Multiscale Simulation of Semiconductor Processing across the Pacific , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[20]  Michael Gschwind,et al.  The IBM Blue Gene/Q Compute Chip , 2012, IEEE Micro.

[21]  Joanne L. Martin Book Reviews : High-Speed Computing: Scientific Applications and Algorithm Design , 1987 .

[22]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[23]  Rajiv K. Kalia,et al.  Metascalable molecular dynamics simulation of nano-mechano-chemistry , 2008 .

[24]  S. L. Dixon,et al.  Fast, accurate semiempirical molecular orbital calculations for macromolecules , 1997 .

[25]  Erich Strohmaier,et al.  Linearly scaling 3D fragment method for large-scale electronic structure calculations , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[26]  Rajiv K. Kalia,et al.  Massively parallel algorithms for computational nanoelectronics based on quantum molecular dynamics , 1994 .

[27]  Kaori Fukuzawa,et al.  Modeling of peptide–silica interaction based on four-body corrected fragment molecular orbital (FMO4) calculations , 2013 .

[28]  Burkhard D. Steinmacher-Burow,et al.  The IBM Blue Gene/Q Interconnection Fabric , 2012, IEEE Micro.

[29]  Lin-wang Wang,et al.  Nonadiabatic molecular dynamics simulation for carrier transport in a pentathiophene butyric acid monolayer , 2013 .

[30]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[31]  Stefan Goedecker,et al.  Tight binding molecular dynamics , 1994, Proceedings of Supercomputing '94.

[32]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[33]  Priya Vashishta,et al.  A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations. , 2014, The Journal of chemical physics.

[34]  Rajiv K. Kalia,et al.  Scalable I/O of large-scale molecular dynamics simulations: A data-compression algorithm , 2000 .

[35]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[36]  Shiv N. Khanna,et al.  Complementary Active Sites Cause Size-Selective Reactivity of Aluminum Cluster Anions with Water , 2009, Science.

[37]  Xinhua Liang,et al.  Efficient Generation of H2 by Splitting Water with an Isothermal Redox Cycle , 2013, Science.

[38]  Aiichiro Nakano,et al.  Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics , 1997 .

[39]  Walter Kohn NEARSIGHTEDNESS OF ELECTRONIC MATTER , 2008 .

[40]  S. Hirata,et al.  Fragment and localized orbital methods in electronic structure theory. , 2012, Physical chemistry chemical physics : PCCP.

[41]  J. Dziedzic,et al.  Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions. , 2013, The Journal of chemical physics.

[42]  Markus Eisenbach,et al.  A scalable method for ab initio computation of free energies in nanoscale systems , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[43]  E Weinan,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..

[44]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[45]  D. Bowler,et al.  Linear Scaling Constrained Density Functional Theory in CONQUEST. , 2011, Journal of chemical theory and computation.

[46]  Ryo Kobayashi,et al.  Linear scaling algorithm of real-space density functional theory of electrons with correlated overlapping domains , 2012, Comput. Phys. Commun..

[47]  Zhongwei Zhao,et al.  Hydrogen generation by splitting water with Al–Li alloys , 2013 .

[48]  Weiqiang Wang,et al.  A metascalable computing framework for large spatiotemporal-scale atomistic simulations , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[49]  Priya Vashishta,et al.  Bonding and structure of ceramic-ceramic interfaces. , 2013, Physical review letters.

[50]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[51]  Franz Franchetti,et al.  Large-Scale First-Principles Molecular Dynamics simulations on the BlueGene/L Platform using the Qbox code , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[52]  Ibm Redbooks,et al.  IBM System Blue Gene Solution: Blue Gene/P Application Development , 2009 .

[53]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[54]  Martin Karplus,et al.  Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization , 1972 .

[55]  R. Gutierrez,et al.  Charge migration in organic materials: Can propagating charges affect the key physical quantities controlling their motion? , 2012, 1201.4652.

[56]  Priya Vashishta,et al.  Molecular dynamics simulations of rapid hydrogen production from water using aluminum clusters as catalyzers. , 2010, Physical review letters.

[57]  Nir Goldman,et al.  Catalytic behaviour of dense hot water. , 2009, Nature chemistry.

[58]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[59]  S. Redner Citation statistics from 110 years of physical review , 2005, physics/0506056.

[60]  Rajiv K. Kalia,et al.  Enhanced reactivity of nanoenergetic materials: A first-principles molecular dynamics study based on divide-and-conquer density functional theory , 2009 .

[61]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[62]  Yang Wang,et al.  High performance first principles method for complex magnetic properties , 1998, SC '98.

[63]  Truong Vinh Truong Duy,et al.  A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations , 2012, Comput. Phys. Commun..

[64]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[65]  Wilfried N. Gansterer,et al.  An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems , 2002, TOMS.

[66]  Franz Franchetti,et al.  SPIRAL: Code Generation for DSP Transforms , 2005, Proceedings of the IEEE.

[67]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[68]  Shigenori Tanaka,et al.  Statistical correction to effective interactions in the fragment molecular orbital method , 2013 .

[69]  Rajiv K. Kalia,et al.  Performance Characteristics of Hardware Transactional Memory for Molecular Dynamics Application on BlueGene/Q: Toward Efficient Multithreading Strategies for Large-Scale Scientific Applications , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.

[70]  中野 愛一郎,et al.  Dynamic correlations in electron liquids , 1989 .

[71]  Alessandro Curioni,et al.  Algorithmic Rethinking and Code Reengineering for Truly Massively Parallel ab initio Molecular Dynamics Simulations , 2014 .

[72]  Liu Peng,et al.  High-order stencil computations on multicore clusters , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[73]  Jean-Luc Fattebert,et al.  Accurate and scalable O(N) algorithm for first-principles molecular-dynamics computations on large parallel computers. , 2014, Physical review letters.

[74]  Amith R. Mamidala,et al.  Looking under the hood of the IBM Blue Gene/Q network , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[75]  Aiichiro Nakano,et al.  A space-time-ensemble parallel nudged elastic band algorithm for molecular kinetics simulation , 2008, Comput. Phys. Commun..

[76]  Yuichi Inadomi,et al.  Full Electron Calculation Beyond 20,000 Atoms: Ground Electronic State of Photosynthetic Proteins , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[77]  Kiyoyuki Terakura,et al.  Molecular orbital calculation of biomolecules with fragment molecular orbitals , 2009 .

[78]  Masato Kobayashi,et al.  Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations. , 2008, The Journal of chemical physics.

[79]  Rajiv K. Kalia,et al.  Scalable and portable implementation of the fast multipole method on parallel computers , 2003 .

[80]  Priya Vashishta,et al.  Hydrogen-on-demand using metallic alloy nanoparticles in water. , 2014, Nano letters.

[81]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[82]  Takao Otsuka,et al.  Trimer effects in fragment molecular orbital-linear combination of molecular orbitals calculation of one-electron orbitals for biomolecules. , 2013, The Journal of chemical physics.

[83]  Michele Benzi,et al.  Decay Properties of Spectral Projectors with Applications to Electronic Structure , 2012, SIAM Rev..

[84]  Nakano,et al.  Dynamic correlations in electron liquids. I. General formalism. , 1989, Physical review. B, Condensed matter.

[85]  Aiichiro Nakano,et al.  Nanoscopic mechanisms of singlet fission in amorphous molecular solid , 2013 .

[86]  Rajiv K. Kalia,et al.  A scalable parallel algorithm for dynamic range-limited n-tuple computation in many-body molecular dynamics simulation , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).