Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling

[1]  J. Heckenlively,et al.  Genotype-phenotype correlation in 440 patients with NPHP-related ciliopathies. , 2011, Kidney international.

[2]  W. Alcaraz,et al.  Modifier genes and non-genetic factors reshape anatomical deficits in Zfp423-deficient mice. , 2011, Human molecular genetics.

[3]  S. Letteboer,et al.  The ciliopathy-associated protein homologs RPGRIP1 and RPGRIP1L are linked to cilium integrity through interaction with Nek4 serine/threonine kinase. , 2011, Human molecular genetics.

[4]  R. Müller,et al.  NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway , 2011, The Journal of cell biology.

[5]  Matthew J. Brauer,et al.  Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways , 2011, Cell.

[6]  H. Zentgraf,et al.  Nephrocystin-4 Regulates Pyk2-induced Tyrosine Phosphorylation of Nephrocystin-1 to Control Targeting to Monocilia* , 2011, The Journal of Biological Chemistry.

[7]  E. Brambilla,et al.  Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin , 2011, The EMBO journal.

[8]  M. Yaffe,et al.  Is post-transcriptional stabilization, splicing and translation of selective mRNAs a key to the DNA damage response? , 2011, Cell cycle.

[9]  J. Bridger,et al.  Association of adipogenic genes with SC-35 domains during porcine adipogenesis , 2010, Chromosome Research.

[10]  L. Buée,et al.  Nuclear Tau, a Key Player in Neuronal DNA Protection* , 2010, The Journal of Biological Chemistry.

[11]  Colin A. Johnson,et al.  Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy , 2010, Journal of Medical Genetics.

[12]  S. Elledge,et al.  The DNA damage response: making it safe to play with knives. , 2010, Molecular cell.

[13]  S. Levy,et al.  Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy , 2010, Nature Genetics.

[14]  F. Hildebrandt,et al.  Nephrocystin-3 is required for ciliary function in zebrafish embryos. , 2010, American journal of physiology. Renal physiology.

[15]  Y. Shyr,et al.  Functional genomic screens identify CINP as a genome maintenance protein , 2009, Proceedings of the National Academy of Sciences.

[16]  F. Mulero,et al.  A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging , 2009, Nature Genetics.

[17]  H. Zentgraf,et al.  Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1 , 2009, The Journal of cell biology.

[18]  E. Y. Lee,et al.  UV-dependent interaction between Cep164 and XPA mediates localization of Cep164 at sites of DNA damage and UV sensitivity , 2009, Cell cycle.

[19]  A. McMahon,et al.  A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney , 2009, Development.

[20]  Peter Nürnberg,et al.  A Systematic Approach to Mapping Recessive Disease Genes in Individuals from Outbred Populations , 2009, PLoS genetics.

[21]  D. Nicastro,et al.  Drosophila asterless and Vertebrate Cep152 Are Orthologs Essential for Centriole Duplication , 2008, Genetics.

[22]  M. Gerner,et al.  Genetic and physical interaction between the NPHP5 and NPHP6 gene products. , 2008, Human molecular genetics.

[23]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[24]  Carsten Bergmann,et al.  Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. , 2008, American journal of human genetics.

[25]  Shaohui Wang,et al.  Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. , 2008, Genes & development.

[26]  F. Hildebrandt,et al.  NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. , 2008, Journal of the American Society of Nephrology : JASN.

[27]  K. Devriendt,et al.  Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism , 2008, Science.

[28]  William C Earnshaw,et al.  Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling , 2008, Nature Genetics.

[29]  G. Germino,et al.  A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1 , 2007, Nature Medicine.

[30]  Janel O. Johnson,et al.  Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11 , 2007, Nature Genetics.

[31]  S. Cairo,et al.  Functional characterization of the OFD1 protein reveals a nuclear localization and physical interaction with subunits of a chromatin remodeling complex. , 2007, Molecular biology of the cell.

[32]  Erich A. Nigg,et al.  Cep164, a novel centriole appendage protein required for primary cilium formation , 2007, The Journal of cell biology.

[33]  D. Seelow,et al.  Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis , 2007, Nature Genetics.

[34]  Edward N Pugh,et al.  The Proteome of the Mouse Photoreceptor Sensory Cilium Complex*S , 2007, Molecular & Cellular Proteomics.

[35]  I. Glass,et al.  Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior–Løken syndrome , 2007, Journal of Medical Genetics.

[36]  P. Hozák,et al.  PML protein association with specific nucleolar structures differs in normal, tumor and senescent human cells. , 2007, Journal of structural biology.

[37]  Jiangyang Zhang,et al.  The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. , 2007, Developmental biology.

[38]  Colin A. Johnson,et al.  The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome , 2007, Nature Genetics.

[39]  Xiang-Dong Fu,et al.  Splicing Regulator SC35 Is Essential for Genomic Stability and Cell Proliferation during Mammalian Organogenesis , 2007, Molecular and Cellular Biology.

[40]  S. Elledge,et al.  Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair , 2007, Cell.

[41]  Vítězslav Bryja,et al.  β-Arrestin is a necessary component of Wnt/β-catenin signaling in vitro and in vivo , 2007, Proceedings of the National Academy of Sciences.

[42]  C. Brenner,et al.  p53 Activation by Knockdown Technologies , 2007, PLoS genetics.

[43]  G. Schulte,et al.  Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism , 2007, Journal of Cell Science.

[44]  Eric Raponi,et al.  Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation , 2006, Proceedings of the National Academy of Sciences.

[45]  Laurie A. Smith,et al.  Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine , 2006, Nature.

[46]  Laurie A. Smith,et al.  Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. , 2006, Journal of the American Society of Nephrology : JASN.

[47]  T. Meitinger,et al.  Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. , 2006, American journal of human genetics.

[48]  Yan Liu,et al.  The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4 , 2006, Nature Genetics.

[49]  A. Swaroop,et al.  In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. , 2006, Human molecular genetics.

[50]  Madeline A. Lancaster,et al.  Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome , 2006, Nature Genetics.

[51]  M. MacCoss,et al.  The KLHL12–Cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation , 2006, Nature Cell Biology.

[52]  K. Anderson,et al.  Cilia and Hedgehog responsiveness in the mouse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  G. Germino Linking cilia to Wnts , 2005, Nature Genetics.

[54]  O. A. Cabello,et al.  Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways , 2005, Nature Genetics.

[55]  G. Enders,et al.  Cdk inhibition in human cells compromises chk1 function and activates a DNA damage response. , 2005, Cancer research.

[56]  J. Bartek,et al.  Checking Out the Centrosome , 2004, Cell cycle.

[57]  M. Mann,et al.  Proteomic characterization of the human centrosome by protein correlation profiling , 2003, Nature.

[58]  A. Hata,et al.  Poly(ADP-ribose) polymerase 1 interacts with OAZ and regulates BMP-target genes. , 2003, Biochemical and biophysical research communications.

[59]  M. O'Donohue,et al.  Cell-cycle-dependent three-dimensional redistribution of nuclear proteins, P 120, pKi-67, and SC 35 splicing factor, in the presence of the topoisomerase I inhibitor camptothecin. , 2003, Experimental cell research.

[60]  Lee Niswander,et al.  Hedgehog signalling in the mouse requires intraflagellar transport proteins , 2003, Nature.

[61]  Tanya M. Teslovich,et al.  Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome , 2003, Nature.

[62]  Bernhard Schermer,et al.  Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis , 2003, Nature Genetics.

[63]  T. Strachan,et al.  Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination , 2003, Nature Genetics.

[64]  Judith A. Goodship,et al.  A splicing mutation affecting expression of ataxia–telangiectasia and Rad3–related protein (ATR) results in Seckel syndrome , 2003, Nature Genetics.

[65]  R. Sudbrak,et al.  A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. , 2002, American journal of human genetics.

[66]  Nicolas Produit,et al.  Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. , 2000, American journal of human genetics.

[67]  Daniel F. Gudbjartsson,et al.  Allegro, a new computer program for multipoint linkage analysis , 2000, Nature genetics.

[68]  T. Stankovic,et al.  The DNA Double-Strand Break Repair Gene hMRE11 Is Mutated in Individuals with an Ataxia-Telangiectasia-like Disorder , 1999, Cell.

[69]  R. Y. Tsai,et al.  Identification of DNA Recognition Sequences and Protein Interaction Domains of the Multiple-Zn-Finger Protein Roaz , 1998, Molecular and Cellular Biology.

[70]  F. Hildebrandt,et al.  A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1 , 1997, Nature Genetics.

[71]  L Kruglyak,et al.  Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.

[72]  M. Lovett,et al.  A single ataxia telangiectasia gene with a product similar to PI-3 kinase. , 1995, Science.

[73]  M. Kirschner,et al.  Pericentrin, a highly conserved centrosome protein involved in microtubule organization , 1994, Cell.

[74]  Martin S. Taylor,et al.  CEP152 is a genome maintenance protein disrupted in Seckel syndrome , 2011, Nature Genetics.

[75]  Emily H Turner,et al.  Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes , 2009, Nature.

[76]  F. Hildebrandt,et al.  Nephronophthisis: disease mechanisms of a ciliopathy. , 2009, Journal of the American Society of Nephrology : JASN.

[77]  S. Letteboer,et al.  Versatile screening for binary protein-protein interactions by yeast two-hybrid mating. , 2008, Methods in molecular biology.

[78]  Jean-François Nicolas,et al.  Defective planar cell polarity in polycystic kidney disease , 2006, Nature Genetics.

[79]  A. Nayır,et al.  The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin , 2002, Nature Genetics.