Diffusion Tensor Anisotropy in Adolescents and Adults

We acquired diffusion tensor images on 33 normal adults aged 22–64 and 15 adolescents aged 14–21. We assessed relative anisotropy in stereotaxically located regions of interest in the internal capsule, corpus callosum, anterior thalamic radiations, frontal anterior fasciculus, fronto-occipital fasciculus, temporal lobe white matter, cingulum bundle, frontal inferior longitudinal fasciculus, frontal superior longitudinal fasciculus, and optic radiations. All of these structures except the optic radiations, corpus callosum, and frontal inferior longitudinal fasciculus exhibited differences in anisotropy between adolescents and adults. Areas with anisotropy increasing with age included the anterior limb of the internal capsule, superior levels of the frontal superior longitudinal fasciculus and the inferior portion of the temporal white matter. Areas with anisotropy decreasing with age included the posterior limb of the internal capsule, anterior thalamic radiations, fronto-occipital fasciculus, anterior portion of the frontal anterior fasciculus, inferior portion of the frontal superior longitudinal fasciculus, cingulum bundle and superior portion of the temporal axis. Sex differences were found in the majority of areas but were most marked in the cingulum bundle and internal capsule. These results suggest continuing white matter development between adolescence and adulthood.

[1]  P. Yakovlev,et al.  The myelogenetic cycles of regional maturation of the brain , 1967 .

[2]  A. Minkowski,et al.  Regional Development of the Brain in Early Life , 1968 .

[3]  J. Moossy Histology and Histopathology of the Nervous System , 1982 .

[4]  Robert T. Leshner,et al.  Remyelination in the Human Central Nervous System , 1989, Journal of neuropathology and experimental neurology.

[5]  F. Benes,et al.  Myelination of cortical-hippocampal relays during late adolescence. , 1989, Schizophrenia bulletin.

[6]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[7]  Monte S. Buchsbaum,et al.  Adolescent developmental change in topography of EEG amplitude , 1992, Schizophrenia Research.

[8]  N C Andreasen,et al.  The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology. , 1992, Archives of general psychiatry.

[9]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[10]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[11]  M S Buchsbaum,et al.  MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia , 1998, Neuroreport.

[12]  A. D. de Crespigny,et al.  Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. , 1999, Archives of general psychiatry.

[13]  Timothy J. Crow,et al.  The size and fiber composition of the anterior commissure with respect to gender and schizophrenia , 1999, Biological Psychiatry.

[14]  J. Gabrieli,et al.  Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. , 1999, Neuroreport.

[15]  K. Lim,et al.  Age‐related decline in brain white matter anisotropy measured with spatially corrected echo‐planar diffusion tensor imaging , 2000, Magnetic resonance in medicine.

[16]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[17]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[18]  H. Axer,et al.  Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy , 2000, Journal of Neuroscience Methods.

[19]  P. Lauterbur,et al.  Apparent diffusion tensor measurements in myelin‐deficient rat spinal cords , 2001, Magnetic resonance in medicine.

[20]  M S Buchsbaum,et al.  Regional and global changes in cerebral diffusion with normal aging. , 2001, AJNR. American journal of neuroradiology.

[21]  J. Shimony,et al.  Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. , 2001, Radiology.

[22]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[23]  J. Fuster Frontal lobe and cognitive development , 2002, Journal of neurocytology.

[24]  Joseph A Maldjian,et al.  Diffusion anisotropy in the corpus callosum. , 2002, AJNR. American journal of neuroradiology.

[25]  Marko Wilke,et al.  Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study. , 2002, Radiology.

[26]  A. Malhotra,et al.  Sex differences in frontal lobe white matter microstructure: a DTI study , 2003, Neuroreport.

[27]  K. A. Il’yasov,et al.  Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence , 2004, Neuroradiology.

[28]  Stephan Eliez,et al.  Investigation of white matter structure in velocardiofacial syndrome: a diffusion tensor imaging study. , 2003, The American journal of psychiatry.

[29]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[30]  Thomas F. Nugent,et al.  Dynamic mapping of human cortical development during childhood through early adulthood. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Klingberg,et al.  Maturation of White Matter is Associated with the Development of Cognitive Functions during Childhood , 2004, Journal of Cognitive Neuroscience.

[32]  Adam M. Brickman,et al.  Neuropsychological functioning in first-break, never-medicated adolescents with psychosis. , 2004 .

[33]  René Westerhausen,et al.  Effects of handedness and gender on macro- and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. , 2004, Brain research. Cognitive brain research.

[34]  L. Steinberg Cognitive and affective development in adolescence , 2005, Trends in Cognitive Sciences.

[35]  Peter B Kingsley,et al.  Contrast‐to‐noise ratios of diffusion anisotropy indices , 2005, Magnetic resonance in medicine.

[36]  Fei Wang,et al.  Asymmetry analysis of cingulum based on scale‐invariant parameterization by diffusion tensor imaging , 2005, Human brain mapping.

[37]  Hiromu Nishitani,et al.  Regional changes of fractional anisotropy with normal aging using statistical parametric mapping (SPM). , 2005, The journal of medical investigation : JMI.

[38]  Hiroshi Honda,et al.  Age-related structural changes in the young adult brain shown by magnetic resonance diffusion tensor imaging. , 2005, Academic radiology.

[39]  Christian Beaulieu,et al.  Diffusion tensor imaging of neurodevelopment in children and young adults , 2005, NeuroImage.

[40]  Hae-Jeong Park,et al.  Sex differences in the human corpus callosum: diffusion tensor imaging study , 2005, Neuroreport.

[41]  Edith V. Sullivan,et al.  Frontal circuitry degradation marks healthy adult aging: Evidence from diffusion tensor imaging , 2005, NeuroImage.

[42]  A. Dale,et al.  Age-related alterations in white matter microstructure measured by diffusion tensor imaging , 2005, Neurobiology of Aging.

[43]  Talma Hendler,et al.  Normal white matter development from infancy to adulthood: Comparing diffusion tensor and high b value diffusion weighted MR images , 2005, Journal of magnetic resonance imaging : JMRI.

[44]  V. Schmithorst,et al.  Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study , 2005, Human brain mapping.

[45]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[46]  Monte S. Buchsbaum,et al.  White matter fractional anisotropy and outcome in schizophrenia , 2006, Schizophrenia Research.

[47]  A. Pfefferbaum,et al.  Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. , 2006, Cerebral cortex.