Submodular Function Minimization and Maximization in Discrete Convex Analysis
暂无分享,去创建一个
[1] László Lovász,et al. Matroid matching and some applications , 1980, J. Comb. Theory, Ser. B.
[2] Kazuo Murota,et al. M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..
[3] Satoru Iwata,et al. A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.
[4] Kazuo Murota,et al. Valuated Matroid Intersection II: Algorithms , 1996, SIAM J. Discret. Math..
[5] D. M. Topkis. Supermodularity and Complementarity , 1998 .
[6] Gérard Cornuéjols,et al. Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..
[7] Walter Wenzel,et al. Valuated matroids: a new look at the greedy algorithm , 1989 .
[8] Daniel Lehmann,et al. Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.
[9] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[10] Zaifu Yang,et al. A Note on Kelso and Crawford's Gross Substitutes Condition , 2003, Math. Oper. Res..
[11] Alexander Schrijver,et al. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.
[12] M. L. Fisher,et al. An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..
[13] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[14] James B. Orlin,et al. A faster strongly polynomial time algorithm for submodular function minimization , 2007, Math. Program..
[15] Jan Vondrák,et al. Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.
[16] Bernhard Korte,et al. Complexity of Matroid Property Algorithms , 1982, SIAM J. Comput..
[17] Satoru Iwata,et al. Submodular function minimization , 2007, Math. Program..
[18] Kazuo Murota,et al. Conjugacy relationship between M-convex and L-convex functions in continuous variables , 2004, Math. Program..
[19] Maxim Sviridenko,et al. Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee , 2004, J. Comb. Optim..
[20] Jack Edmonds,et al. Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.
[21] Kazuo Murota,et al. On Steepest Descent Algorithms for Discrete Convex Functions , 2003, SIAM J. Optim..
[22] Akiyoshi Shioura,et al. On the Pipage Rounding Algorithm for Submodular Function Maximization - a View from Discrete Convex Analysis , 2009, Discret. Math. Algorithms Appl..
[23] Kazuo Murota,et al. Discrete convex analysis , 1998, Math. Program..
[24] Kazuo Murota,et al. Notes on L-/M-convex functions and the separation theorems , 2000, Math. Program..
[25] Kazuo Murota,et al. Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..
[26] Kazuo Murota,et al. Extension of M-Convexity and L-Convexity to Polyhedral Convex Functions , 1999, Adv. Appl. Math..
[27] Kazuo Murota,et al. MATHEMATICAL ENGINEERING TECHNICAL REPORTS Recent Developments in Discrete Convex Analysis , 2008 .
[28] Satoru Iwata,et al. Conjugate Scaling Algorithm for Fenchel-Type Duality in Discrete Convex Optimization , 2002, SIAM J. Optim..
[29] András Frank,et al. A Weighted Matroid Intersection Algorithm , 1981, J. Algorithms.
[30] Jan Vondrák,et al. Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.
[31] Kazuo Murota,et al. Fundamental Properties of M-Convex and L-Convex Functions in Continuous Variables , 2004 .
[32] P. Favati. Convexity in nonlinear integer programming , 1990 .
[33] K. Murota. Convexity and Steinitz's Exchange Property , 1996 .
[34] A. Frank. An Algorithm for Submodular Functions on Graphs , 1982 .
[35] Satoru Fujishige. Theory of submodular programs: A fenchel-type min-max theorem and subgradients of submodular functions , 1984, Math. Program..
[36] Kazuo Murota,et al. Matrices and Matroids for Systems Analysis , 2000 .