Electrochemical transistors with ionic liquids for enzymatic sensing

Over the past decade conducting polymer electrodes have played an important role in bio-sensing and actuation. Recent developments in the field of organic electronics have made available a variety of devices that bring unique capabilities at the interface with biology. One example is organic electrochemical transistors (OECTs) that are being developed for a variety of bio-sensing applications, including the detection of ions, and metabolites, such as glucose and lactate. Room temperature ionic liquids (RTILs) are organic salts, which are liquid at ambient temperature. Their nonvolatile character and thermal stability makes them an attractive alternative to conventional organic solvents. Here we report an enzymatic sensor based on an organic electro-chemical transistor with RTIL's as an integral part of its structure and as an immobilization medium for the enzyme and the mediator. Further investigation shows that these platforms can be incorporated into flexible materials such as carbon cloth and can be utilized for bio-sensing. The aim is to incorporate the overall platform in a wearable sensor to improve athlete performance with regards to training. In this manuscript an introduction to ionic liquids (ILs), IL - enzyme mixtures and a combination of these novel materials being used on OECTs are presented.

[1]  Ram S. Mohan,et al.  Reactivity of ionic liquids , 2007 .

[2]  J. F. Knifton,et al.  Ethylene glycol from synthesis gas via ruthenium melt catalysis , 1981 .

[3]  J. P. Canal,et al.  From the reactivity of N-heterocyclic carbenes to new chemistry in ionic liquids. , 2006, Chemical communications.

[4]  Rajiv Prakash,et al.  Copper(II) ion-selective microelectrochemical transistor , 2001, Applied biochemistry and biotechnology.

[5]  K. Seddon,et al.  Ionic liquids: designer solvents for green synthesis , 2002 .

[6]  A. Daugulis,et al.  Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor , 2005, Applied Microbiology and Biotechnology.

[7]  Charles Angell Origin and Control of Low-Melting Behavior in Salts, Polysalts, Salt Solvates, and Glassformers , 2002 .

[8]  Changcheng Zhu,et al.  A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH. , 2004, Chemical communications.

[9]  Douglas R. MacFarlane,et al.  Phosphonium-Based Ionic Liquids: An Overview , 2009 .

[10]  Fei Zhao,et al.  Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid. , 2008, Analytical biochemistry.

[11]  G. Blomgren,et al.  Ionic Liquids for Lithium Ion and Related Batteries , 2002 .

[12]  G. Wallace,et al.  Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers , 2003 .

[13]  Jianji Wang,et al.  L-Proline in an ionic liquid as an efficient and reusable catalyst for direct asymmetric α-aminoxylation of aldehydes and ketones , 2006 .

[14]  Ram S. Mohan,et al.  Reactivity of ionic liquids , 2007 .

[15]  G. W. Parshall,et al.  Phosphine Complexes of Rhenium , 2007 .

[16]  Fassil Ghebremichael,et al.  Nonlinear Optical Ionic Liquids , 2006 .

[17]  Gunnar Jeschke,et al.  Heterogeneity of the Surfactant Layer in Organically Modified Silicates and Polymer/Layered Silicate Composites , 2006 .

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  J. Goldman,et al.  Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications , 1999 .

[20]  G. W. Parshall,et al.  Lewis acid adducts of trans-hydrocyanobis(triethylphosphine)platinum , 1976 .

[21]  M. Maroncelli,et al.  Solvation Dynamics and Rotation of Coumarin 153 in Alkylphosphonium Ionic Liquids , 2004 .

[22]  Roger A Sheldon,et al.  Immobilised enzymes: carrier-bound or carrier-free? , 2003, Current opinion in biotechnology.

[23]  P. R. Danesi,et al.  SELECTIVITY-STRUCTURE TRENDS IN THE EXTRACTION OF Co(II) AND Ni(II) BY DIALKYL PHOSPHORIC, ALKYL ALKYLPHOSPHONIC,AND DIALKYLPHOSPHINIC ACIDS∗ , 1985 .

[24]  J. F. Knifton,et al.  Homogeneous Transition-Metal Catalysis in Molten Salts , 1988 .

[25]  P. Bartlett,et al.  A microelectrochemical switch responsive to NADH , 1996 .

[26]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[27]  Jason A C Clyburne,et al.  Electrochemical reduction of an imidazolium cation: a convenient preparation of imidazol-2-ylidenes and their observation in an ionic liquid. , 2004, Chemical communications.

[28]  J. Ross Ullman's encyclopedia of industrial chemistry , 1986 .

[29]  Fenghua Li,et al.  Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing. , 2008, Biosensors & bioelectronics.

[30]  P. Bartlett,et al.  A Microelectrochemical Enzyme Transistor Responsive to Glucose , 1994 .

[31]  Hiroshi,et al.  Dye-sensitized Solar Cells Using IonicLiquid-based Electrolytes , 2004 .

[32]  George G. Malliaras,et al.  Steady‐State and Transient Behavior of Organic Electrochemical Transistors , 2007 .

[33]  Anthony J. Arduengo,et al.  Looking for Stable Carbenes: The Difficulty in Starting Anew , 1999 .

[34]  A. Stark,et al.  1-Ethyl-3-methylimidazolium halogenoaluminate ionic liquids as solvents for Friedel–Crafts acylation reactions of ferrocene , 1999 .

[35]  Hoon Sik Kim,et al.  Ionic Liquids as Electrolytes for Li Ion Batteries , 2004 .

[36]  T. Spychaj,et al.  Ionic liquids as convenient latent hardeners of epoxy resins , 2003 .

[37]  H. Pettersson,et al.  The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications , 1996 .

[38]  Robin D. Rogers,et al.  The third evolution of ionic liquids: active pharmaceutical ingredients , 2007 .

[39]  N. Devi,et al.  Extraction and separation of Mn(II) and Zn(II) from sulphate solutions by sodium salt of Cyanex 272 , 1997 .

[40]  Grzegorz Lota,et al.  Room-temperature phosphonium ionic liquids for supercapacitor application , 2005 .

[41]  C. Angell,et al.  Protic Ionic Liquids: Preparation, Characterization, and Proton Free Energy Level Representation † , 2007 .

[42]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[43]  P. Bartlett,et al.  An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film. , 1998, Analytical chemistry.

[44]  Guodong Yuan,et al.  Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants , 2007 .

[45]  Masahiro Yoshizawa,et al.  Room temperature ionic liquids from 20 natural amino acids. , 2005, Journal of the American Chemical Society.

[46]  Peter Wasserscheid,et al.  Ionic Liquids in Synthesis , 2002 .

[47]  Robin D. Rogers,et al.  Ionic Liquids Then and Now: From Solvents to Materials to Active Pharmaceutical Ingredients , 2007 .

[48]  Norris W. Hoffman,et al.  Sweet success: Ionic liquids derived from non-nutritive sweeteners. , 2004, Chemical communications.

[49]  Wen Lu,et al.  Electrochemical Actuator Devices Based on Polyaniline Yarns and Ionic Liquid Electrolytes , 2005 .

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  Dermot Diamond,et al.  Electrochemical transistors with ionic liquids for enzymatic sensing. , 2010, Chemical communications.

[52]  J. F. Knifton,et al.  Vicinal glycol esters from synthesis gas , 1981 .

[53]  Tony McNally,et al.  Ionic Liquid Modification of Layered Silicates for Enhanced Thermal Stability , 2007 .

[54]  P. Bartlett,et al.  Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)–poly(styrenesulfonate) composite films , 1996 .

[55]  George G. Malliaras,et al.  Enzymatic sensing with organic electrochemical transistors , 2008 .

[56]  Dae-Won Park,et al.  Copolymerization of phenyl glycidyl ether with carbon dioxide catalyzed by ionic liquids , 2005 .

[57]  G. Wallace,et al.  Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes , 2003 .

[58]  S. Zakeeruddin,et al.  Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells , 2004 .

[59]  D. Beebe,et al.  Surface-directed liquid flow inside microchannels. , 2001, Science.

[60]  Douglas R. MacFarlane,et al.  Phosphonium-Based Ionic Liquids: An Overview , 2009 .

[61]  Wei Xie,et al.  Thermal Stability of Quaternary Phosphonium Modified Montmorillonites , 2002 .

[62]  Rajiv Prakash,et al.  Copper(II) ion-selective microelectrochemical transistor , 2000 .

[63]  Zhen Yang,et al.  Ionic liquids: Green solvents for nonaqueous biocatalysis , 2005 .

[64]  R. A. Sheldon,et al.  Cross-linked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization (a review) , 2005 .

[65]  Filip Stefaniak,et al.  Phosphonium acesulfamate based ionic liquids , 2005 .

[66]  K. R. Seddon,et al.  Diels–Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate–diethyl ether mixtures , 1999 .

[67]  Hiroyuki Ohno,et al.  Improved ionic conductivity of nitrile rubber/ionic liquid composites , 2005 .

[68]  György Keglevich,et al.  The Phosphorus Aspects of Green Chemistry: the Use of Quaternary Phosphonium Salts and 1,3-Dialkylimidazolium Hexafluorophosphates in Organic Synthesis , 2007 .

[69]  G. W. Parshall,et al.  Synthesis and properties of cobalt(I) compounds. I. Triethyl phosphite complexes , 1974 .

[70]  Maria Forsyth,et al.  Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics , 2001 .

[71]  Varinder K Aggarwal,et al.  Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis-Hillman reaction. , 2002, Chemical communications.

[72]  Raquel Verdejo,et al.  Effect of montmorillonite intercalant structure on the cure parameters of natural rubber , 2008 .

[73]  Anil Kumar,et al.  Novel label-free DNA sensors based on poly(3,4-ethylenedioxythiophene). , 2004, Chemical communications.

[74]  J. Kimmig,et al.  Invertseifen als Antimykotika; Zusammenhänge zwischen Konstitution und Wirkung , 1950 .

[75]  Peng Wang,et al.  High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. , 2002, Chemical communications.

[76]  Edward Plichta,et al.  Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. , 2005, The journal of physical chemistry. B.

[77]  Kun Qiao,et al.  Novel acidic ionic liquids catalytic systems for Friedel-Crafts alkylation of aromatic compounds with alkenes , 2004 .

[78]  James McNulty,et al.  Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions. , 2002, Chemical communications.

[79]  V. Koch,et al.  Differential Capacitance Measurements in Solvent‐Free Ionic Liquids at Hg and C Interfaces , 1997 .

[80]  Paul A. Kohl,et al.  Properties of asymmetric benzyl-substituted ammonium ionic liquids and their electrochemical properties , 2005 .

[81]  G. W. Parshall,et al.  Dimethylphosphinothioic Chloride and Dimethylphosphinous Chloride: (Chlorodimethylphosphine) , 2007 .

[82]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[83]  K. M. Alexander,et al.  Uses of Quaternary Phosphonium Compounds in Phase Transfer Catalysis , 2000 .

[84]  Luigi Cassar,et al.  Phase-Transfer Catalysis , 1977 .

[85]  Shadpour Mallakpour,et al.  Ionic Liquids as Green Solvents: Progress and Prospects , 2012 .

[86]  Stuart J. Williams,et al.  Stable Carbenes as Strong Bases. , 1995 .

[87]  James McNulty,et al.  Heck reactions of aryl halides in phosphonium salt ionic liquids: library screening and applications , 2004 .

[88]  Roger A. Sheldon,et al.  Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity , 2004 .

[89]  Arthur W. Herriott,et al.  Phase transfer catalysis. Evaluation of catalysis , 1975 .

[90]  V. Koch,et al.  Nonaqueous electrolytes for electrochemical capacitors: Imidazolium cations and inorganic fluorides with organic carbonates , 1997 .

[91]  R. Vaia,et al.  Structure and dynamics of surfactant interfaces in organically modified clays. , 2008, The journal of physical chemistry. B.

[92]  David Nilsson,et al.  An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper , 2002 .

[93]  Robin D. Rogers,et al.  Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate , 2003 .

[94]  James McNulty,et al.  Heck Reactions of Aryl Halides in Phosphonium Salt Ionic Liquids: Library Screening and Applications. , 2005 .

[95]  Dario Landini,et al.  Stability of quaternary onium salts under phase-transfer conditions in the presence of aqueous alkaline solutions , 1986 .

[96]  Nahid Amini,et al.  Structural studies of ambient temperature plastic crystal ion conductors , 2001 .

[97]  Robin D. Rogers,et al.  Ionic liquids : industrial applications for green chemistry , 2002 .

[98]  Gianni Podda,et al.  Nonhydrated anion transfer from the aqueous to the organic phase: enhancement of nucleophilic reactivity in phase-transfer catalysis , 1982 .

[99]  M. Yamaguchi,et al.  Noninvasively measuring blood glucose using saliva. , 1998, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[100]  George G. Malliaras,et al.  Influence of Device Geometry on Sensor Characteristics of Planar Organic Electrochemical Transistors , 2010, Advanced materials.

[101]  Ravi S Kane,et al.  Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[102]  K. Tsunashima,et al.  Physical and Electrochemical Properties of Room Temperature Ionic Liquids Based on Quaternary Phosphonium Cations , 2007 .

[103]  George G. Malliaras,et al.  Organic semiconductors in sensor applications , 2008 .

[104]  Taramatee Ramnial,et al.  Phosphonium Ionic Liquids as Reaction Media for Strong Bases. , 2005 .

[105]  Hua Zhao,et al.  Methods for stabilizing and activating enzymes in ionic liquids--a review , 2010 .

[106]  Toshiyuki Itoh,et al.  A rational design of phosphonium salt type ionic liquids for ionic liquid coated-lipase catalyzed reaction , 2010 .

[107]  G. W. Parshall,et al.  Reactivity of trialkylphosphine complexes of platinum(O) , 1971 .

[108]  James McNulty,et al.  Suzuki Cross-Coupling Reactions of Aryl Halides in Phosphonium Salt Ionic Liquid under Mild Conditions. , 2002 .

[109]  Andrew Streitwieser,et al.  Basicity of a stable carbene, 1,3-di-tert-butylimidazol-2-ylidene, in THF. , 2002, Journal of the American Chemical Society.

[110]  Takayuki Shoji,et al.  Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins , 2001 .

[111]  Michael J. Zaworotko,et al.  Air and Water Stable 1‐Ethyl‐3‐methylimidazolium Based Ionic Liquids. , 1992 .

[112]  J. Clyburne,et al.  Phosphonium ionic liquids as reaction media for strong bases. , 2005, Chemical communications.

[113]  James McNulty,et al.  Phosphonium Salts as Room‐Temperature Ionic Liquids in Organic Synthesis , 2006 .

[114]  Musa R. Kamal,et al.  Polystyrene/Phosphonium Organoclay Nanocomposites by Melt Compounding , 2008 .