Introduction d'un modèle de respiration dans une méthode de recalage à partir de points d'intérêt d'images TEP et TDM du poumon Using a breathing model for landmark-based CT-PET lung registration

This paper deals with the problem of 3D registration of Computed Tomography (CT) images (at two different instants of the breathing cycle) and Positon Emission Tomography (PET) images of thoracic regions. In order to guarantee physiologically plausible deformations, we presen t a novel method to incorporate a breathing model in a nonlinear registration procedure. Our registration method is based on an automatic selection of landmark points based on the curvature of the lung surface. The rigidity of the potential tumors is preserved during the registration, while guaranteeing a continuous deformation. Initial results on one normal case and four pathological cases demonstrate the interest of this method to significantly improve the accuracy of multi-modal volume registration.

[1]  Johannes H A M Kaanders,et al.  Correction of an image size difference between positron emission tomography (PET) and computed tomography (CT) improves image fusion of dedicated PET and CT , 2006, Nuclear medicine communications.

[2]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Victor B. Zordan,et al.  Breathe easy: Model and control of human respiration for computer animation , 2006, Graph. Model..

[4]  Margrit Betke,et al.  Landmark detection in the chest and registration of lung surfaces with an application to nodule registration , 2003, Medical Image Anal..

[5]  J. Adler,et al.  Robotic Motion Compensation for Respiratory Movement during Radiosurgery , 2000, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[6]  Pierre Baconnier,et al.  Physically-based model for simulating the human trunk respiration movements , 1997, CVRMed.

[7]  Geoffrey G. Zhang,et al.  Elastic image mapping for 4-D dose estimation in thoracic radiotherapy. , 2005, Radiation protection dosimetry.

[8]  Haiying Liu,et al.  Using Points and Surfaces to Improve Voxel-Based Non-rigid Registration , 2002, MICCAI.

[9]  Antonio Moreno Ingelmo Recalage non-linéaire d'images TEP et CT du thorax pour la caractérisation des tumeurs : application à la radiothérapie , 2007 .

[10]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[11]  Torsten Rohlfing,et al.  Modeling liver motion and deformation during the respiratory cycle using intensity-based free-form registration of gated MR images , 2001, SPIE Medical Imaging.

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  K. Rohr,et al.  Investigation of Approaches for the Localization of Anatomical Landmarks in 3D Medical Images , 1997 .

[14]  J. McClelland,et al.  A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. , 2006, Medical physics.

[15]  W. O'Dell,et al.  Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images. , 2004, Medical physics.

[16]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Jürgen Weese,et al.  Landmark-based elastic registration using approximating thin-plate splines , 2001, IEEE Transactions on Medical Imaging.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  U Narusawa,et al.  General characteristics of the sigmoidal model equation representing quasi-static pulmonary P-V curves. , 2001, Journal of applied physiology.

[20]  B. Simon,et al.  A comprehensive equation for the pulmonary pressure-volume curve. , 1998, Journal of applied physiology.

[21]  David Sarrut,et al.  Nonrigid registration method to assess reproducibility of breath-holding with ABC in lung cancer. , 2004, International journal of radiation oncology, biology, physics.

[22]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[23]  W. Segars,et al.  Study of the efficacy of respiratory gating in myocardial SPECT using the new 4-D NCAT phantom , 2001 .

[24]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[25]  R. Shekhar,et al.  Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  Josien P. W. Pluim,et al.  Image registration , 2003, IEEE Transactions on Medical Imaging.

[28]  Cameron J. Ritchie,et al.  Respiratory compensation in projection imaging using a magnification and displacement model , 1996, IEEE Trans. Medical Imaging.

[29]  V. Boldea,et al.  Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. , 2006, Medical physics.

[30]  Jay B. West,et al.  Hybrid point-and-intensity-based deformable registration for abdominal CT images , 2005, SPIE Medical Imaging.

[31]  David Sarrut,et al.  Extraction du signal respiratoire à partir de projections cone-beam pour l'imagerie TDM 4D Extraction of the respiratory signal from cone-beam projections for 4D CT imaging , 2006 .