Cyclic behaviour of structures under thermomechanical loadings: Application to exhaust manifolds

A structure subjected to thermomechanical cyclic loadings may exhibit various cyclic behaviours: perfect elasticity, elastic shakedown, plastic shakedown and ratchetting. The quantitative characterization of these different asymptotic states is addressed in this paper, in the context of the Generalized Standard Materials (GSM). Criteria are established to identify them and capture the trend line of their evolution, in the context of numerical simulation. The definitions are extended to the case of temperature dependent mechanical properties. Simple strain paths are first considered to illustrate the relevancy of the proposition. Finally, as an application, the example of an exhaust manifold subjected to a classical thermomechanical fatigue test is analyzed.

[1]  Alternative approach to shakedown as a solution of a min-max problem , 1992 .

[2]  K. Dang Van,et al.  A unified approach for high and low cycle fatigue based on shakedown concepts , 2003 .

[3]  Mauro Filippini,et al.  A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .

[4]  F. Dunne,et al.  High– and low–cycle fatigue crack initiation using polycrystal plasticity , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Eric Charkaluk,et al.  A computational approach to thermomechanical fatigue , 2004 .

[6]  David L. McDowell,et al.  Simulation-based strategies for microstructure-sensitive fatigue modeling , 2007 .

[7]  K. Johnson,et al.  A model for the mild ratchetting wear of metals , 1996 .

[8]  Eric Charkaluk,et al.  An energetic approach in thermomechanical fatigue for silicon molybdenum cast iron , 2000 .

[9]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[10]  Myriam Bourgeois,et al.  New flow rules in elasto-viscoplastic constitutive models for spheroidal graphite cast-iron , 2010 .

[11]  John W. Hutchinson,et al.  Plasticity in fretting of coated substrates , 1999 .

[12]  D. Cojocaru,et al.  A simple numerical method of cycle jumps for cyclically loaded structures , 2006 .

[13]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[14]  John A. Williams,et al.  The influence of repeated loading, residual stresses and shakedown on the behaviour of tribological contacts , 2005 .

[15]  N. Ohno,et al.  Kinematic hardening model suitable for ratchetting with steady-state , 2000 .

[16]  G. Kang,et al.  Stress-based fatigue failure models for uniaxial ratchetting–fatigue interaction , 2008 .

[17]  Guozheng Kang,et al.  Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application , 2008 .

[18]  Georges Cailletaud,et al.  Integration methods for complex plastic constitutive equations , 1996 .

[19]  Jean-Louis Chaboche,et al.  A NON‐LINEAR CONTINUOUS FATIGUE DAMAGE MODEL , 1988 .

[20]  J. Chaboche,et al.  Modeling of ratchetting: evaluation of various approaches , 1994 .

[21]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[22]  M. H. Maitournam,et al.  A high‐cycle fatigue life model for variable amplitude multiaxial loading , 2008 .

[23]  A. Galtier,et al.  A multiscale fatigue life model for complex cyclic multiaxial loading , 2011 .

[24]  N. Ohno CONSTITUTIVE MODELING OF CYCLIC PLASTICITY WITH EMPHASIS ON RATCHETTING , 1998 .

[25]  Matthew R. Begley,et al.  Plasticity in fretting contact , 2000 .

[26]  Laurent Bucher Etude de l'endommagement en fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile , 2004 .

[27]  K. Dang Van,et al.  Fatigue design of structures under thermomechanical loadings , 2002 .

[28]  Quoc Son Nguyen,et al.  On shakedown analysis in hardening plasticity , 2003 .

[29]  J. Chaboche Continuum Damage Mechanics: Part I—General Concepts , 1988 .

[30]  G. A. Webster,et al.  Energy criteria and cumulative damage during fatigue crack growth , 1998 .

[31]  R. P. Skelton,et al.  A re-interpretation of the BCR/VAMAS low cycle fatigue intercomparison programme using an energy criterion , 1997 .

[32]  Stéphane Chapuliot,et al.  A comparison of lifetime prediction methods for a thermal fatigue experiment , 2006 .

[33]  T. Nguyen-Tajan,et al.  Determination of the stabilized response of a structure undergoing cyclic thermal-mechanical loads by a direct cyclic method , 2003 .

[34]  Ajay Kapoor,et al.  Plastic ratchetting as a mechanism of erosive wear , 1995 .

[35]  J. Mandel,et al.  Adaptation d'une structure elastoplastique a ecrouissage cinematique , 1977 .

[36]  M. Begley,et al.  The role of macroscopic plastic deformation in fretting fatigue life predictions , 2001 .

[37]  Claude Stolz,et al.  An optimal control approach to the analysis of inelastic structures under cyclic loading , 2003 .